Evaluating the Energy Performance of Transparent Photovoltaics for Building Windows in Tropical Climates

  • Laurentius Kevin Hendinata Department of Nuclear Engineering and Engineering Physics, Faculty of Engineering, Universitas Gadjah Mada
  • Ribka Prilia Department of Nuclear Engineering and Engineering Physics, Universitas Gadjah Mada
  • Ahmad Ilham Rokhul Fikri Department of Nuclear Engineering and Engineering Physics, Universitas Gadjah Mada
  • Michael Alfano Suprapto Department of Nuclear Engineering and Engineering Physics, Universitas Gadjah Mada
  • Nur Abdillah Siddiq Department of Nuclear Engineering and Engineering Physics, Universitas Gadjah Mada
Keywords: transparent photovoltaics, building windows, energy consumption, passive design, EnergyPlus model

Abstract

Windows are a critical factor in enhancing energy efficiency in buildings, especially in tropical climates, where they are exposed to high-intensity sunlight. The incorporation of transparent photovoltaics using various PV technologies offers the opportunity for windows to harness solar energy for building purposes. The energy-saving benefits of using transparent photovoltaics have been extensively analyzed in various countries, but there is still a lack of comparative studies focusing on tropical countries. Our study aims to fill this gap by assessing the potential of transparent photovoltaics in enhancing energy efficiency in buildings located in Jakarta, Singapore, Kuala Lumpur, Rio de Janeiro, and Kotoka. We developed an energy consumption model located in a tropical climate, utilizing the EnergyPlus software. The simulation results clearly indicate that integrating photovoltaics into the building is particularly advantageous due to consistent solar radiation and the need for cooling and ventilation, resulting in a substantial up to 59.3% reduction in total energy consumption. As a contribution, our research underscores the potential of transparent photovoltaics to revolutionize building energy efficiency in tropical climates, providing significant energy savings and promoting sustainable building practices. Addressing climate challenges, such as temperature and humidity management, necessitates the utilization of advanced materials and design strategies. Additionally, policy challenges encompass the requirement for favorable policies, incentives, and well-defined guidelines for the installation of PV windows.

Downloads

Download data is not yet available.

References

Abdullahi, M. M., Mas’ud, A. A., Mas’ud, I. A., Ardila-Rey, J. A., Muhammad-Sukki, F., Karim, R., Saudi, A. S. M., Bani, N. A., & Wirba, A. V. (2021). A review of building integrated photovoltaic: Case study of tropical climatic regions. International Journal of Power Electronics and Drive Systems (IJPEDS), 12(1), Article 1. https://doi.org/10.11591/ijpeds.v12.i1.pp474-488

Aguilar-Santana, J. L., Jarimi, H., Velasco-Carrasco, M., & Riffat, S. (2020). Review on window-glazing technologies and future prospects. International Journal of Low-Carbon Technologies, 15(1), 112–120. https://doi.org/10.1093/ijlct/ctz032

Arnaout, M. A., Go, Y. I., & Saqaff, A. (2020). Pilot study on building-integrated PV: Technical assessment and economic analysis. International Journal of Energy Research, 44(12), 9538–9559. https://doi.org/10.1002/er.5204

Baenas, T., & Machado, M. (2017). On the analytical calculation of the solar heat gain coefficient of a BIPV module. Energy and Buildings, 151, 146–156. https://doi.org/10.1016/j.enbuild.2017.06.039

Basher, M. K., Nur-E-Alam, M., Rahman, M. M., Alameh, K., & Hinckley, S. (2023). Aesthetically appealing building integrated photovoltaic systems for net-zero energy buildings. Current status, challenges, and future developments—A review. Buildings, 13(4), Article 4. https://doi.org/10.3390/buildings13040863

Brito, M. C., Freitas, S., Guimarães, S., Catita, C., & Redweik, P. (2017). The importance of facades for the solar PV potential of a Mediterranean city using LiDAR data. Renewable Energy, 111, 85–94. https://doi.org/10.1016/j.renene.2017.03.085

Buratti, C., Belloni, E., Merli, F., & Ricciardi, P. (2018). A new index combining thermal, acoustic, and visual comfort of moderate environments in temperate climates. Building and Environment, 139, 27–37. https://doi.org/10.1016/j.buildenv.2018.04.038

Chen, F., Wittkopf, S. K., Khai Ng, P., & Du, H. (2012). Solar heat gain coefficient measurement of semi-transparent photovoltaic modules with indoor calorimetric hot box and solar simulator. Energy and Buildings, 53, 74–84. https://doi.org/10.1016/j.enbuild.2012.06.005

Chen, T., An, Y., & Heng, C. K. (2022). A review of building-integrated photovoltaics in Singapore: Status, barriers, and prospects. Sustainability, 14(16), Article 16. https://doi.org/10.3390/

su141610160

Cuce, E., & Cuce, P. M. (2019). Optimised performance of a thermally resistive PV glazing technology: An experimental validation. Energy Reports, 5, 1185–1195. https://doi.org/10.1016/j.egyr.2019.

046

Dijkgraaf, E., Dorp, T. P. V., & Maasland, E. (2018). On the effectiveness of feed-in tariffs in the development of solar photovoltaics. The Energy Journal, 39(1). https://doi.org/10.5547/01956574.

1.edij

Do, S. L., Shin, M., Baltazar, J.-C., & Kim, J. (2017). Energy benefits from semi-transparent BIPV window and daylight-dimming systems for IECC code-compliance residential buildings in hot and humid climates. Solar Energy, 155, 291–303. https://doi.org/10.1016/j.solener.2017.06.039

Dubey, S., Sarvaiya, J. N., & Seshadri, B. (2013). Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world – A review. Energy Procedia, 33, 311–321. https://doi.org/10.1016/j.egypro.2013.05.072

Duque, F. V., Lezama, J. M. L., & Galeano, N. M. (2017). Effects of incentives for renewable energy in Colombia. Ingeniería y Universidad, 21(2). https://www.redalyc.org/journal/477/47751131007

/html/

Ebhota, W. S., & Tabakov, P. Y. (2023). Influence of photovoltaic cell technologies and elevated temperature on photovoltaic system performance. Ain Shams Engineering Journal, 14(7), 101984. https://doi.org/10.1016/j.asej.2022.101984

Fregonara, E., Curto, R., Grosso, M., Mellano, P., Rolando, D., & Tulliani, J.-M. (2013). Environmental technology, materials science, architectural design, and real estate market evaluation: A multidisciplinary approach for energy-efficient buildings. Journal of Urban Technology, 20(4), 57–80. https://doi.org/10.1080/10630732.2013.855512

Gueymard, C. A., & duPont, W. C. (2009). Spectral effects on the transmittance, solar heat gain, and performance rating of glazing systems. Solar Energy, 83(6), 940–953. https://doi.org/10.1016

/j.solener.2008.12.012

Halimatussadiah, A., Kurniawan, R., Farah Mita, A., Amanda Siregar, A., Al Kautsar Anky, W., Farah Maulia, R., &

Hartono, D. (2023). The impact of fiscal incentives on the feasibility of solar photovoltaic and wind electricity generation projects: The case of Indonesia. Journal of Sustainable Development of Energy, Water and Environment Systems, 11(1), 1–16.

Hasan, K., Yousuf, S. B., Tushar, M. S. H. K., Das, B. K., Das, P., & Islam, Md. S. (2022). Effects of different environmental and operational factors on the PV performance: A comprehensive review. Energy Science & Engineering, 10(2), 656–675. https://doi.org/10.1002/ese3.1043

Hassan, M. M., Refat, K. H., Baten, Md. Z., & Sajjad, R. N. (2022). Energy saving potential of photovoltaic windows: Impact of shading, geography and climate. Solar Energy, 240, 342–353. https://doi.org/10.1016/j.solener.2022.05.034

Huang, L., Zhu, Y., Ouyang, Q., & Cao, B. (2012). A study on the effects of thermal, luminous, and acoustic environments on indoor environmental comfort in offices. Building and Environment, 49, 304–309. https://doi.org/10.1016/j.buildenv.2011.07.022

Jelle, B. P., Breivik, C., & Drolsum Røkenes, H. (2012). Building integrated photovoltaic products: A state-of-the-art review and future research opportunities. Solar Energy Materials and Solar Cells, 100, 69–96. https://doi.org/10.1016/j.solmat.2011.12.016

Joseph, B., Kichonge, B., & Pogrebnaya, T. (2019). Semi-transparent building integrated photovoltaic solar glazing: Investigations of electrical and optical performances for window applications in tropical region. Journal of Energy, 2019, e6096481. https://doi.org/10.1155/2019/6096481

Kim, S. S., Bae, M. J., & Kim, Y. D. (2016). Policies and status of window design for energy efficient buildings. Procedia Engineering, 146, 155–157. https://doi.org/10.1016/j.proeng.2016.06.366

Kılıç, U., & Kekezoğlu, B. (2022). A review of solar photovoltaic incentives and Policy: Selected countries and Turkey. Ain Shams Engineering Journal, 13(5), 101669. https://doi.org/10.1016/

j.asej.2021.101669

Kolani, K., Wang, Y., Zhou, D., Nouyep Tchitchui, J. U., & Okolo, C. V. (2023). Passive building design for improving indoor thermal comfort in tropical climates: A bibliometric analysis using CiteSpace. Indoor and Built Environment, 1420326X231158512. https://doi.org/10.1177/

X231158512

Le, H. T.-T., Sanseverino, E. R., Nguyen, D.-Q., Di Silvestre, M. L., Favuzza, S., & Pham, M.-H. (2022). Critical assessment of feed-in tariffs and solar photovoltaic development in Vietnam. Energies, 15(2), Article 2. https://doi.org/10.3390/en15020556

Lee, K., Um, H.-D., Choi, D., Park, J., Kim, N., Kim, H., & Seo, K. (2020). The Development of transparent photovoltaics. Cell Reports Physical Science, 1(8), 100143. https://doi.org/10.1016/j.xcrp.2020.100143

Li, Z., Zhang, W., Xie, L., Wang, W., Tian, H., Chen, M., & Li, J. (2021). Life cycle assessment of semi-transparent photovoltaic window applied on building. Journal of Cleaner Production, 295, 126403. https://doi.org/10.1016/j.jclepro.2021.126403

Liu, D., Sun, Y., Wilson, R., & Wu, Y. (2020). Comprehensive evaluation of window-integrated semi-transparent PV for building daylight performance. Renewable Energy, 145, 1399–1411. https://doi.org/10.1016/j.renene.2019.04.167

Liu, X., & Wu, Y. (2022). A review of advanced architectural glazing technologies for solar energy conversion and intelligent daylighting control. Architectural Intelligence, 1(1), 10. https://doi.org/10.1007/s44223-022-00009-6

Lo, K., Mah, D. N.-Y., Wang, G., Leung, M. K., Lo, A. Y., & Hills, P. (2018). Barriers to adopting solar photovoltaic systems in Hong Kong. Energy & Environment, 29(5), 649–663.

Lu, Y., Khan, Z. A., Alvarez-Alvarado, M. S., Zhang, Y., Huang, Z., & Imran, M. (2020). A critical review of sustainable energy policies for the promotion of renewable energy sources. Sustainability, 12(12), Article 12. https://doi.org/10.3390/su12125078

Mangkuto, R. A., Tresna, D. N. A. T., Hermawan, I. M., Pradipta, J., Jamala, N., Paramita, B., & Atthaillah. (2023). Experiment and simulation to determine the optimum orientation of building-integrated photovoltaic on tropical building façades considering annual daylight performance and energy yield. Energy and Built Environment. https://doi.org/10.1016/j.enbenv.2023.01.002

Mannan, M., & Al-Ghamdi, S. G. (2021). Indoor air quality in buildings: A comprehensive review on the factors influencing air pollution in residential and commercial structure. International Journal of Environmental Research and Public Health, 18(6), Article 6. https://doi.org/10.3390/ijerph18063276

Martín-Chivelet, N., Kapsis, K., Wilson, H. R., Delisle, V., Yang, R., Olivieri, L., Polo, J., Eisenlohr, J., Roy, B., Maturi, L., Otnes, G., Dallapiccola, M., & Upalakshi Wijeratne, W. M. P. (2022). Building-Integrated Photovoltaic (BIPV) products and systems: A review of energy-related behavior. Energy and Buildings, 262, 111998. https://doi.org/10.1016/j.enbuild.2022.111998

Mesloub, A., Ghosh, A., Albaqawy, G. A., Noaime, E., & Alsolami, B. M. (2020). Energy and daylighting evaluation of integrated semitransparent photovoltaic windows with internal light shelves in open-office buildings. Advances in Civil Engineering, 2020, e8867558. https://doi.org/10.1155/2020/8867558

Needell, D. R., Phelan, M. E., Hartlove, J. T., & Atwater, H. A. (2021). Solar power windows: Connecting scientific advances to market signals. Energy, 219, 119567. https://doi.org/10.1016/j.energy.2020.119567

Ng, P. K., Mithraratne, N., & Kua, H. W. (2013). Energy analysis of semi-transparent BIPV in Singapore buildings. Energy and Buildings, 66, 274–281. https://doi.org/10.1016/j.enbuild.2013.

029

Panagiotidou, M., Brito, M. C., Hamza, K., Jasieniak, J. J., & Zhou, J. (2021). Prospects of photovoltaic rooftops, walls and windows at a city to building scale. Solar Energy, 230, 675–687. https://doi.org/10.1016/j.solener.2021.10.060

Rababah, H. E., Ghazali, A., & Mohd Isa, M. H. (2021). Building Integrated Photovoltaic (BIPV) in Southeast Asian countries: Review of effects and challenges. Sustainability, 13(23), Article 23. https://doi.org/10.3390/su132312952

Rifaat, S. I. (2019). The multidisciplinary approach to architectural education: Bridging the gap between academic education and the complexities of professional practice. IOP Conference Series: Materials Science and Engineering, 471(8), 082067. https://doi.org/10.1088/1757-899X/471/8/082067

Romaní, J., Hiller, M., & Salom, J. (2021, September 1). Modelling of transparent PV windows with complex fenestration systems in TRNSYS. 2021 Building Simulation Conference. https://doi.org/10.26868/25222708.2021.30486

Roy, A., Ghosh, A., Bhandari, S., Sundaram, S., & Mallick, T. K. (2020). Perovskite solar cells for BIPV application: A review. Buildings, 10(7), Article 7. https://doi.org/10.3390/buildings10070129

Sánchez-Palencia, P., Martín-Chivelet, N., & Chenlo, F. (2019). Modeling temperature and thermal transmittance of building integrated photovoltaic modules. Solar Energy, 184, 153–161. https://doi.org/10.1016/j.solener.2019.03.096

Segbefia, O. K., Imenes, A. G., & Sætre, T. O. (2021). Moisture ingress in photovoltaic modules: A review. Solar Energy, 224, 889–906. https://doi.org/10.1016/j.solener.2021.06.055

Simões, N., Moghaddam, S. A., & da Silva, M. G. (2023). Review of the experimental methods for evaluation of windows’ thermal transmittance: From standardized tests to new possibilities. Buildings, 13(3), Article 3. https://doi.org/10.3390/buildings13030703

Tarigan, E. (2020). Rooftop PV system policy and implementation study for a household in Indonesia. International Journal of Energy Economics and Policy, 10(5), Article 5.

Ulavi, T., Hebrink, T., & Davidson, J. H. (2014). Analysis of a hybrid solar window for building integration. Energy Procedia, 57, 1941–1950. https://doi.org/10.1016/j.egypro.2014.10.058

Usta, P., & Zengin, B. (2022). An evaluation of the glazing type impact on building energy performance through a building simulation. Journal of Energy Systems, 6(1), Article 1. https://doi.org/10.30521/jes.945193

Vaka, M., Walvekar, R., Rasheed, A. K., & Khalid, M. (2020). A review on Malaysia’s solar energy pathway towards carbon-neutral Malaysia beyond Covid’19 pandemic. Journal of Cleaner Production, 273, 122834. https://doi.org/10.1016/j.jclepro.2020.122834

Wheeler, V. M., Kim, J., Daligault, T., Rosales, B. A., Engtrakul, C., Tenent, R. C., & Wheeler, L. M. (2022). Photovoltaic windows cut energy use and CO2 emissions by 40% in highly glazed buildings. One Earth, 5(11), 1271–1285. https://doi.org/10.1016/j.oneear.2022.10.014

Yang, S., Fiorito, F., Sproul, A., & Prasad, D. (2023). Optimising design parameters of a building-integrated photovoltaic double-skin facade in different climate zones in Australia. Buildings, 13(4), Article 4. https://doi.org/10.3390/buildings13041096

Ye, Z., Nobre, A., Reindl, T., Luther, J., & Reise, C. (2013). On PV module temperatures in tropical regions. Solar Energy, 88, 80–87. https://doi.org/10.1016/j.solener.2012.11.001

Yu, G., Yang, H., Luo, D., Cheng, X., & Ansah, M. K. (2021). A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds. Renewable and Sustainable Energy Reviews, 149, 111355. https://doi.org/10.1016/j.rser.2021.111355

Published
2024-08-29
How to Cite
Hendinata, L. K., Prilia, R., Fikri, A. I. R., Suprapto, M. A., & Siddiq, N. A. (2024). Evaluating the Energy Performance of Transparent Photovoltaics for Building Windows in Tropical Climates. Indonesian Journal of Energy, 7(2), 66–77. https://doi.org/10.33116/ije.v7i2.192