Achieving Sustainable Energy Security in Indonesia Through Substitution of Liquefied Petroleum Gas with Dimethyl Ether as Household Fuel
Abstract
Indonesia has been facing an energy security issue regarding Liquefied Petroleum Gas (LPG) consumption. The rapid increase of LPG consumption and huge import have driven the Indonesian government to develop the alternative for LPG in the household sector. Dimethyl ether (DME) is the well-fit candidate to substitute LPG because of its properties similarities. However, discrepancies in the properties, such as combustion enthalpy and corrosivity, lead to adjustments in the application. Coal is a potential raw material to produce DME, especially in Indonesia, known as the fourth-largest coal producer globally. However, the gasification of coal into DME brings a problem in its sustainability. To compensate for the emission, co-processing of DME with biomass, especially from agricultural residue, has been discovered. Recently, carbon dioxide (CO2) captured from the gasification process has also been developed as the raw material to produce DME. The utilization of CO2 recycling into DME consists of two approaches, methanol synthesis and dehydration reactions (indirect synthesis) and direct hydrogenation of CO2 to DME (direct synthesis). The reactions are supported by the catalytic activity that strongly depends on the metal dispersion, use of dopants and the support choice. Direct synthesis can increase the efficiency of catalysts used for both methanol synthesis and dehydration. This paper intended to summarize the recent advancements in sustainable DME processing. Moreover, an analysis of DME's impact and feasibility in Indonesia was conducted based on the resources, processes, environmental and economic aspects.
Keywords: coal gasification, DME, energy security, LPG, sustainable
Downloads
References
AEER. (2020). Coal Downstreaming in the Form of Dimethyl Ether (DME) Will Increase Greenhouse Gas Emissions.
Aguayo, A. T., Ereña, J., Mier, D., Arandes, J. M., Olazar, M., & Bilbao, J. (2007). Kinetic Modeling of Dimethyl Ether Synthesis in a Single Step on a CuO−ZnO−Al 2 O 3 /γ-Al 2 O 3 Catalyst. Industrial & Engineering Chemistry Research, 46(17), 5522–5530. https://doi.org/10.1021/ie070269s
Anggarani, R., Wibowo, C. S., & Rulianto, D. (2014). Application of dimethyl ether as LPG substitution for household stove. Energy Procedia, 47, 227–234. https://doi.org/10.1016/j.egypro.2014.01.218
Armijo, J., & Philibert, C. (2020). Flexible production of green hydrogen and ammonia from variable solar and wind energy: Case study of Chile and Argentina. International Journal of Hydrogen Energy, 45(3), 1541–1558. https://doi.org/10.1016/j.ijhydene.2019.11.028
Arya, P. K., Tupkari, S., K., S., Thakre, G. D., & Shukla, B. M. (2016). DME blended LPG as a cooking fuel option for Indian household: A review. Renewable and Sustainable Energy Reviews, 53, 1591–1601. https://doi.org/10.1016/j.rser.2015.09.007
Azizi, Z., Rezaeimanesh, M., Tohidian, T., & Rahimpour, M. R. (2014). Dimethyl ether: A review of technologies and production challenges. Chemical Engineering and Processing: Process Intensification, 82, 150–172. https://doi.org/10.1016/j.cep.2014.06.007
Basu, P. (2013). Biomass gasification, pyrolysis and torrefaction. Practical design and theory (2nd ed.). Elsevier Inc.
Batyrev, E., Vandenheuvel, J., Beckers, J., Jansen, W., & Castricum, H. (2005). The effect of the reduction temperature on the structure of Cu/ZnO/SiO2 catalysts for methanol synthesis. Journal of Catalysis, 229(1), 136–143. https://doi.org/10.1016/j.jcat.2004.10.012
Boedoyo, M. S. (2016). Pemanfaatan Dimethyl Ether (DME) sebagai substitusi bahan bakar minyak dan LPG. Jurnal Teknologi Lingkungan, 11(2), 301. https://doi.org/10.29122/jtl.v11i2.1215
Brown, D. M., Bhatt, B. L., Hsiung, T. H., Lewnard, J. J., & Waller, F. J. (1991). Novel technology for the synthesis of dimethyl ether from syngas. Catalysis Today, 8(3), 279–304. https://doi.org/10.1016/0920-5861(91)80055-E
Budya, H., & Yasir Arofat, M. (2011). Providing cleaner energy access in Indonesia through the megaproject of kerosene conversion to LPG. Energy Policy, 39(12), 7575–7586. https://doi.org/10.1016/j.enpol.2011.02.061
Burnham, A. K. (2018). Van Krevelen Diagrams (pp. 1–5). https://doi.org/10.1007/978-3-319-02330-4_67-1
Centi, G., Quadrelli, E. A., & Perathoner, S. (2013). Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy & Environmental Science, 6(6), 1711. https://doi.org/10.1039/c3ee00056g
Constantine, A. (2008). The potential of Dimethyl Ether(DME) asana alternative fuel for compression-ignition engines: a review. Fuel, 87(7), 1014–1030.
DEN. (2018). Indonesia’s Energy Outlook. https://www.den.go.id/index.php/publikasi/download/70
Dirjen, M. (2018). Laporan Kinerja 2017.
ESDM. (2016). Investment Guidelines Bioenergy in Indonesia.
ESDM, K. (2020). Dimethyl Ether (DME) Sebagai Substitusi LPG di Indonesia.
Fahim, M. A., Alsahhaf, T. A., & Elkilani, A. (2010). Acid gas processing and mercaptans removal. Fundamentals of Petroleum Refining (pp. 377–402). Elsevier. https://doi.org/10.1016/B978-0-444-52785-1.00015-2
Fan, Y. J., & Wu, S. F. (2016). A graphene-supported copper-based catalyst for the hydrogenation of carbon dioxide to form methanol. Journal of CO2 Utilization, 16, 150–156. https://doi.org/10.1016/j.jcou.2016.07.001
Fleisch, T. H., Basu, A., & Sills, R. A. (2012). Introduction and advancement of a new clean global fuel: The status of DME developments in China and beyond. Journal of Natural Gas Science and Engineering, 9, 94–107. https://doi.org/10.1016/j.jngse.2012.05.012
Frusteri, F., Migliori, M., Cannilla, C., Frusteri, L., Catizzone, E., Aloise, A., Giordano, G., & Bonura, G. (2017). Direct CO 2 -to-DME hydrogenation reaction: New evidences of a superior behaviour of FER-based hybrid systems to obtain high DME yield. Journal of CO2 Utilization, 18, 353–361. https://doi.org/10.1016/j.jcou.2017.01.030
Fujiwara, M., Ando, H., Tanaka, M., & Souma, Y. (1994). Hydrogenation of carbon dioxide over Cu–Zn–Cr oxide catalysts. Bulletin of the Chemical Society of Japan, 67(2), 546–550. https://doi.org/10.1246/bcsj.67.546
Gao, W., Wang, H., Wang, Y., Guo, W., & Jia, M. (2013). Dimethyl ether synthesis from CO2 hydrogenation on La-modified CuO-ZnO-Al2O3/HZSM-5 bifunctional catalysts. Journal of Rare Earths, 31(5), 470–476. https://doi.org/10.1016/S1002-0721(12)60305-6
Ghasem, N. (2020). CO2 removal from natural gas. Advances in Carbon Capture (pp. 479–501). Elsevier. https://doi.org/10.1016/B978-0-12-819657-1.00021-9
Haryanto, A., Fernando, S., Murali, N., & Adhikari, S. (2005). Current status of hydrogen production techniques by steam reforming of ethanol: A review. Energy & Fuels, 19(5), 2098–2106. https://doi.org/10.1021/ef0500538
Howaniec, N., & Smoliński, A. (2014). Effect of fuel blend composition on the efficiency of hydrogen-rich gas production in co-gasification of coal and biomass. Fuel, 128, 442–450. https://doi.org/10.1016/j.fuel.2014.03.036
Huth, M., & Heilos, A. (2013). Fuel flexibility in gas turbine systems: impact on burner design and performance. Modern Gas Turbine Systems (pp. 635–684). Elsevier. https://doi.org/10.1533/9780857096067.3.635
Inayat, A., Ghenai, C., Naqvi, M., Ammar, M., Ayoub, M., & Hussin, M. N. B. (2017). Parametric study for production of dimethyl ether (DME) as a fuel from palm wastes. Energy Procedia, 105, 1242–1249. https://doi.org/10.1016/j.egypro.2017.03.431
Jeong, J. W., Ahn, C.-I., Lee, D. H., Um, S. H., & Bae, J. W. (2013). Effects of Cu–ZnO content on reaction rate for direct synthesis of DME from syngas with bifunctional Cu–ZnO/γ-Al2O3 catalyst. Catalysis Letters, 143(7), 666–672. https://doi.org/10.1007/s10562-013-1022-6
Johnson, E. (2009). Goodbye to carbon neutral: Getting biomass footprints right. Environmental Impact Assessment Review, 29(3), 165–168. https://doi.org/10.1016/j.eiar.2008.11.002
Kabir, K., & Bhattacharya, S. (2011). Dimethyl ether production from gasification of victorian brown coal - process model and related preliminary experiments. CHEMECA 2011: Engineering a Better World: Sydney Hilton Hotel, NSW, Australia, 18-21 September 2011.
Kalinci, Y., Hepbasli, A., & Dincer, I. (2009). Biomass-based hydrogen production: A review and analysis. International Journal of Hydrogen Energy, 34(21), 8799–8817. https://doi.org/10.1016/j.ijhydene.2009.08.078
Kim, S., Kim, J., & Yoon, E. S. (2012). Evaluation of coal-based dimethyl ether production system using life cycle assessment in South Korea (pp. 1387–1391). https://doi.org/10.1016/B978-0-444-59506-5.50108-5
Larson, E. D., & Yang, H. (2004). Dimethyl ether (DME) from coal as a household cooking fuel in China. Energy for Sustainable Development, 8(3), 115–126. https://doi.org/10.1016/S0973-0826(08)60473-1
Lecksiwilai, N., Gheewala, S. H., Sagisaka, M., & Yamaguchi, K. (2016). Net energy ratio and life cycle greenhouse gases (GHG) assessment of bio-dimethyl ether (DME) produced from various agricultural residues in Thailand. Journal of Cleaner Production, 134(Part B), 523–531. https://doi.org/10.1016/j.jclepro.2015.10.085
Li, K., Zhang, R., & Bi, J. (2010). Experimental study on syngas production by co-gasification of coal and biomass in a fluidized bed. International Journal of Hydrogen Energy, 35(7), 2722–2726. https://doi.org/10.1016/j.ijhydene.2009.04.046
Liu, D., Yao, C., Zhang, J., Fang, D., & Chen, D. (2011). Catalytic dehydration of methanol to dimethyl ether over modified γ-Al2O3 catalyst. Fuel, 90(5), 1738–1742. https://doi.org/10.1016/j.fuel.2011.01.038
Makmool, U., & Jugjai, S. (2013). Thermal efficiency and pollutant emissions of domestic cooking burners using DME-LPG blends as fuel. The 4th TSME International Conference on Mechanical Engineering.
Makoś, P., Słupek, E., Sobczak, J., Zabrocki, D., Hupka, J., & Rogala, A. (2019). Dimethyl ether (DME) as potential environmental friendly fuel. E3S Web of Conferences, 116, 00048. https://doi.org/10.1051/e3sconf/201911600048
Mamvura, T. A., & Danha, G. (2020). Biomass torrefaction as an emerging technology to aid in energy production. Heliyon, 6(3), e03531. https://doi.org/10.1016/j.heliyon.2020.e03531
Marchionna, M., Patrini, R., Sanfilippo, D., & Migliavacca, G. (2008). Fundamental investigations on di-methyl ether (DME) as LPG substitute or make-up for domestic uses. Fuel Processing Technology, 89(12), 1255–1261. https://doi.org/10.1016/j.fuproc.2008.07.013
Matsumoto, R., Ishihara, I., Ozawa, M., & Imahori, K. (2004). Development of low-NOx emission DME (Dimethyl Ether) combustor. JSME International Journal Series B, 47(2), 214–220. https://doi.org/10.1299/jsmeb.47.214
MEMR. (2007). Kerosene to LPG conversion program 2007–2012. Ministry of Energy and Mineral Resources Republic of Indonesia.
MEMR. (2016a). Handbook of energy and economic statistics of Indonesia 2016. Ministry of Energy and Mineral Resources Republic of Indonesia.
MEMR. (2016b). Pencapaian program konversi s.d. tahun 2016. Ministry of Energy and Mineral Resources Republic of Indonesia.
Migliori, M., Aloise, A., Catizzone, E., & Giordano, G. (2014). Kinetic analysis of methanol to dimethyl ether reaction over H-MFI catalyst. Industrial & Engineering Chemistry Research, 53(38), 14885–14891. https://doi.org/10.1021/ie502775u
Miller, B. (2015). Greenhouse gas – carbon dioxide emissions reduction technologies. Fossil Fuel Emissions Control Technologies (pp. 367–438). Elsevier. https://doi.org/10.1016/B978-0-12-801566-7.00008-7
Miller, B. G. (2011). Clean coal technologies for advanced power generation. Clean Coal Engineering Technology (pp. 251–300). Elsevier. https://doi.org/10.1016/B978-1-85617-710-8.00007-8
Naik, S. P., Ryu, T., Bui, V., Miller, J. D., Drinnan, N. B., & Zmierczak, W. (2011). Synthesis of DME from CO2/H2 gas mixture. Chemical Engineering Journal, 167(1), 362–368. https://doi.org/10.1016/j.cej.2010.12.087
Nieuwenhuis, P., & Wells, P. (2003). Powertrain and fuel. The Automotive Industry and the Environment (pp. 73–86). Elsevier. https://doi.org/10.1016/B978-1-85573-713-6.50009-3
Ohno, Y. (2007). Slurry phase DME direct synthesis technology-100tons/day demonstration plant operation and scale up study. Stud Surf Sci Catal, 403–408.
Palo, D. R., Dagle, R. A., & Holladay, J. D. (2007). Methanol steam reforming for hydrogen production. Chemical Reviews, 107(10), 3992–4021. https://doi.org/10.1021/cr050198b
Parbowo, H. S., Ardy, A., & Susanto, H. (2019). Techno-economic analysis of dimethyl ether production using oil palm empty fruit bunches as feedstock – a case study for Riau. IOP Conference Series: Materials Science and Engineering, 543, 012060. https://doi.org/10.1088/1757-899X/543/1/012060
Prins, M. J., Ptasinski, K. J., & Janssen, F. J. J. G. (2007). From coal to biomass gasification: Comparison of thermodynamic efficiency. Energy, 32(7), 1248–1259. https://doi.org/10.1016/j.energy.2006.07.017
Samei, E., Taghizadeh, M., & Bahmani, M. (2012). Enhancement of stability and activity of Cu/ZnO/Al2O3 catalysts by colloidal silica and metal oxides additives for methanol synthesis from a CO2-rich feed. Fuel Processing Technology, 96, 128–133. https://doi.org/10.1016/j.fuproc.2011.12.028
Sekretariat Jendral Dewan Energi Nasional. (2019). Laporan kajian penelaahan neraca energi nasional 2019. Kementerian Energi dan Sumber Daya Mineral, 1–79.
Semelsberger, T. A., Borup, R. L., & Greene, H. L. (2006). Dimethyl ether (DME) as an alternative fuel. Journal of Power Sources, 156(2), 497–511. https://doi.org/10.1016/j.jpowsour.2005.05.082
Semelsberger, T. A., Ott, K. C., Borup, R. L., & Greene, H. L. (2006). Generating hydrogen-rich fuel-cell feeds from dimethyl ether (DME) using physical mixtures of a commercial Cu/Zn/Al2O3 catalyst and several solid–acid catalysts. Applied Catalysis B: Environmental, 65(3–4), 291–300. https://doi.org/10.1016/j.apcatb.2006.02.015
Shahrier, F., Eva, I. J., Afrin, M., Alam, C. S., & Rashid, A. R. M. H. (2020). Literature review on LCA of LPG as a transportation and cooking fuel. Proceedings of the International Conference on Industrial & Mechanical Engineering and Operations Management.
Shim, H. M., Lee, S. J., Yoo, Y. D., Yun, Y. S., & Kim, H. T. (2009). Simulation of DME synthesis from coal syngas by kinetics model. Korean Journal of Chemical Engineering, 26(3), 641–648. https://doi.org/10.1007/s11814-009-0107-9
Sugawa, S., Sayama, K., Okabe, K., & Arakawa, H. (1995). Methanol synthesis from CO2 and H2 over silver catalyst. Energy Conversion and Management, 36(6–9), 665–668. https://doi.org/10.1016/0196-8904(95)00093-S
Takanabe, K. (2017). Photocatalytic water splitting: Quantitative approaches toward photocatalyst by design. ACS Catalysis, 7(11), 8006–8022. https://doi.org/10.1021/acscatal.7b02662
Tamagnini, P., Axelsson, R., Lindberg, P., Oxelfelt, F., Wünschiers, R., & Lindblad, P. (2002). Hydrogenases and hydrogen metabolism of Cyanobacteria. Microbiology and Molecular Biology Reviews, 66(1), 1–20. https://doi.org/10.1128/MMBR.66.1.1-20.2002
Thoday, K., Benjamin, P., Gan, M., & Puzzolo, E. (2018). The mega conversion program from kerosene to LPG in Indonesia: Lessons learned and recommendations for future clean cooking energy expansion. Energy for Sustainable Development, 46, 71–81. https://doi.org/10.1016/j.esd.2018.05.011
Vicente, J., Gayubo, A. G., Ereña, J., Aguayo, A. T., Olazar, M., & Bilbao, J. (2013). Improving the DME steam reforming catalyst by alkaline treatment of the HZSM-5 zeolite. Applied Catalysis B: Environmental, 130–131, 73–83. https://doi.org/10.1016/j.apcatb.2012.10.019
von der Assen, N., Jung, J., & Bardow, A. (2013). Life-cycle assessment of carbon dioxide capture and utilization: Avoiding the pitfalls. Energy & Environmental Science, 6(9), 2721. https://doi.org/10.1039/c3ee41151f
Wambach, J., Baiker, A., & Wokaun, A. (1999). CO2 hydrogenation over metal/zirconia catalysts. Physical Chemistry Chemical Physics, 1(22), 5071–5080. https://doi.org/10.1039/a904923a
Wu, N., Zhang, W., & Huang, Z. (2008). Impact of dimethyl ether on engine seal materials. Front Energy Power Eng China, 2(3), 279–284.
Wu, Z., & OuYang, D. (2017). Technical-economical analysis on co-gasification of coal and biomass based on the IGCC system with a two-staged gasifier. Energy Procedia, 142, 774–779. https://doi.org/10.1016/j.egypro.2017.12.125
Zha, F., Ding, J., Chang, Y., Ding, J., Wang, J., & Ma, J. (2012). Cu–Zn–Al oxide cores packed by metal-doped amorphous silica–alumina membrane for catalyzing the hydrogenation of carbon dioxide to dimethyl ether. Industrial & Engineering Chemistry Research, 51(1), 345–352. https://doi.org/10.1021/ie202090f
Zha, F., Tian, H., Yan, J., & Chang, Y. (2013). Multi-walled carbon nanotubes as catalyst promoter for dimethyl ether synthesis from CO2 hydrogenation. Applied Surface Science, 285, 945–951. https://doi.org/10.1016/j.apsusc.2013.06.150
Zhang, Y., Li, D., Zhang, Y., Cao, Y., Zhang, S., Wang, K., Ding, F., & Wu, J. (2014). V-modified CuO–ZnO–ZrO2/HZSM-5 catalyst for efficient direct synthesis of DME from CO2 hydrogenation. Catalysis Communications, 55, 49–52. https://doi.org/10.1016/j.catcom.2014.05.026