Achieving Sustainable Energy Security in Indonesia Through Substitution of Liquefied Petroleum Gas with Dimethyl Ether as Household Fuel

  • Natasya Lim Institut Teknologi Bandung
  • Vincent Felixius Institut Teknologi Bandung
  • Timotius Weslie Institut Teknologi Bandung
Keywords: coal gasification, DME, energy security, LPG, sustainability


Indonesia has been facing an energy security issue regarding Liquefied Petroleum Gas (LPG) consumption. The rapid increase of LPG consumption and huge import have driven the Indonesian government to develop the alternative for LPG in the household sector. Dimethyl ether (DME) is the well-fit candidate to substitute LPG because of its properties similarities. However, discrepancies in the properties, such as combustion enthalpy and corrosivity, lead to adjustments in the application. Coal is a potential raw material to produce DME, especially in Indonesia, known as the fourth-largest coal producer globally. However, the gasification of coal into DME  brings a problem in its sustainability. To compensate for the emission, co-processing of DME with biomass, especially from agricultural residue, has been discovered. Recently, carbon dioxide (CO2) captured from the gasification process has also been developed as the raw material to produce DME. The utilization of CO2 recycling into DME consists of two approaches, methanol synthesis and dehydration reactions (indirect synthesis) and direct hydrogenation of CO2 to DME (direct synthesis). The reactions are supported by the catalytic activity that strongly depends on the metal dispersion, use of dopants and the support choice. Direct synthesis can increase the efficiency of catalysts used for both methanol synthesis and dehydration. This paper intended to summarize the recent advancements in sustainable DME processing. Moreover, an analysis of DME's impact and feasibility in Indonesia was conducted based on the resources, processes, environmental and economic aspects.


Keywords: coal gasification, DME, energy security, LPG, sustainable


Download data is not yet available.


AEER. (2020). Coal Downstreaming in the Form of Dimethyl Ether (DME) Will Increase Greenhouse Gas Emissions.

Aguayo, A. T., Ereña, J., Mier, D., Arandes, J. M., Olazar, M., & Bilbao, J. (2007). Kinetic Modeling of Dimethyl Ether Synthesis in a Single Step on a CuO−ZnO−Al 2 O 3 /γ-Al 2 O 3 Catalyst. Industrial & Engineering Chemistry Research, 46(17), 5522–5530.

Anggarani, R., Wibowo, C. S., & Rulianto, D. (2014). Application of dimethyl ether as LPG substitution for household stove. Energy Procedia, 47, 227–234.

Armijo, J., & Philibert, C. (2020). Flexible production of green hydrogen and ammonia from variable solar and wind energy: Case study of Chile and Argentina. International Journal of Hydrogen Energy, 45(3), 1541–1558.

Arya, P. K., Tupkari, S., K., S., Thakre, G. D., & Shukla, B. M. (2016). DME blended LPG as a cooking fuel option for Indian household: A review. Renewable and Sustainable Energy Reviews, 53, 1591–1601.

Azizi, Z., Rezaeimanesh, M., Tohidian, T., & Rahimpour, M. R. (2014). Dimethyl ether: A review of technologies and production challenges. Chemical Engineering and Processing: Process Intensification, 82, 150–172.

Basu, P. (2013). Biomass gasification, pyrolysis and torrefaction. Practical design and theory (2nd ed.). Elsevier Inc.

Batyrev, E., Vandenheuvel, J., Beckers, J., Jansen, W., & Castricum, H. (2005). The effect of the reduction temperature on the structure of Cu/ZnO/SiO2 catalysts for methanol synthesis. Journal of Catalysis, 229(1), 136–143.

Boedoyo, M. S. (2016). Pemanfaatan Dimethyl Ether (DME) sebagai substitusi bahan bakar minyak dan LPG. Jurnal Teknologi Lingkungan, 11(2), 301.

Brown, D. M., Bhatt, B. L., Hsiung, T. H., Lewnard, J. J., & Waller, F. J. (1991). Novel technology for the synthesis of dimethyl ether from syngas. Catalysis Today, 8(3), 279–304.

Budya, H., & Yasir Arofat, M. (2011). Providing cleaner energy access in Indonesia through the megaproject of kerosene conversion to LPG. Energy Policy, 39(12), 7575–7586.

Burnham, A. K. (2018). Van Krevelen Diagrams (pp. 1–5).

Centi, G., Quadrelli, E. A., & Perathoner, S. (2013). Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy & Environmental Science, 6(6), 1711.

Constantine, A. (2008). The potential of Dimethyl Ether(DME) asana alternative fuel for compression-ignition engines: a review. Fuel, 87(7), 1014–1030.

DEN. (2018). Indonesia’s Energy Outlook.

Dirjen, M. (2018). Laporan Kinerja 2017.

ESDM. (2016). Investment Guidelines Bioenergy in Indonesia.

ESDM, K. (2020). Dimethyl Ether (DME) Sebagai Substitusi LPG di Indonesia.

Fahim, M. A., Alsahhaf, T. A., & Elkilani, A. (2010). Acid gas processing and mercaptans removal. Fundamentals of Petroleum Refining (pp. 377–402). Elsevier.

Fan, Y. J., & Wu, S. F. (2016). A graphene-supported copper-based catalyst for the hydrogenation of carbon dioxide to form methanol. Journal of CO2 Utilization, 16, 150–156.

Fleisch, T. H., Basu, A., & Sills, R. A. (2012). Introduction and advancement of a new clean global fuel: The status of DME developments in China and beyond. Journal of Natural Gas Science and Engineering, 9, 94–107.

Frusteri, F., Migliori, M., Cannilla, C., Frusteri, L., Catizzone, E., Aloise, A., Giordano, G., & Bonura, G. (2017). Direct CO 2 -to-DME hydrogenation reaction: New evidences of a superior behaviour of FER-based hybrid systems to obtain high DME yield. Journal of CO2 Utilization, 18, 353–361.

Fujiwara, M., Ando, H., Tanaka, M., & Souma, Y. (1994). Hydrogenation of carbon dioxide over Cu–Zn–Cr oxide catalysts. Bulletin of the Chemical Society of Japan, 67(2), 546–550.

Gao, W., Wang, H., Wang, Y., Guo, W., & Jia, M. (2013). Dimethyl ether synthesis from CO2 hydrogenation on La-modified CuO-ZnO-Al2O3/HZSM-5 bifunctional catalysts. Journal of Rare Earths, 31(5), 470–476.

Ghasem, N. (2020). CO2 removal from natural gas. Advances in Carbon Capture (pp. 479–501). Elsevier.

Haryanto, A., Fernando, S., Murali, N., & Adhikari, S. (2005). Current status of hydrogen production techniques by steam reforming of ethanol: A review. Energy & Fuels, 19(5), 2098–2106.

Howaniec, N., & Smoliński, A. (2014). Effect of fuel blend composition on the efficiency of hydrogen-rich gas production in co-gasification of coal and biomass. Fuel, 128, 442–450.

Huth, M., & Heilos, A. (2013). Fuel flexibility in gas turbine systems: impact on burner design and performance. Modern Gas Turbine Systems (pp. 635–684). Elsevier.

Inayat, A., Ghenai, C., Naqvi, M., Ammar, M., Ayoub, M., & Hussin, M. N. B. (2017). Parametric study for production of dimethyl ether (DME) as a fuel from palm wastes. Energy Procedia, 105, 1242–1249.

Jeong, J. W., Ahn, C.-I., Lee, D. H., Um, S. H., & Bae, J. W. (2013). Effects of Cu–ZnO content on reaction rate for direct synthesis of DME from syngas with bifunctional Cu–ZnO/γ-Al2O3 catalyst. Catalysis Letters, 143(7), 666–672.

Johnson, E. (2009). Goodbye to carbon neutral: Getting biomass footprints right. Environmental Impact Assessment Review, 29(3), 165–168.

Kabir, K., & Bhattacharya, S. (2011). Dimethyl ether production from gasification of victorian brown coal - process model and related preliminary experiments. CHEMECA 2011: Engineering a Better World: Sydney Hilton Hotel, NSW, Australia, 18-21 September 2011.

Kalinci, Y., Hepbasli, A., & Dincer, I. (2009). Biomass-based hydrogen production: A review and analysis. International Journal of Hydrogen Energy, 34(21), 8799–8817.

Kim, S., Kim, J., & Yoon, E. S. (2012). Evaluation of coal-based dimethyl ether production system using life cycle assessment in South Korea (pp. 1387–1391).

Larson, E. D., & Yang, H. (2004). Dimethyl ether (DME) from coal as a household cooking fuel in China. Energy for Sustainable Development, 8(3), 115–126.

Lecksiwilai, N., Gheewala, S. H., Sagisaka, M., & Yamaguchi, K. (2016). Net energy ratio and life cycle greenhouse gases (GHG) assessment of bio-dimethyl ether (DME) produced from various agricultural residues in Thailand. Journal of Cleaner Production, 134(Part B), 523–531.

Li, K., Zhang, R., & Bi, J. (2010). Experimental study on syngas production by co-gasification of coal and biomass in a fluidized bed. International Journal of Hydrogen Energy, 35(7), 2722–2726.

Liu, D., Yao, C., Zhang, J., Fang, D., & Chen, D. (2011). Catalytic dehydration of methanol to dimethyl ether over modified γ-Al2O3 catalyst. Fuel, 90(5), 1738–1742.

Makmool, U., & Jugjai, S. (2013). Thermal efficiency and pollutant emissions of domestic cooking burners using DME-LPG blends as fuel. The 4th TSME International Conference on Mechanical Engineering.

Makoś, P., Słupek, E., Sobczak, J., Zabrocki, D., Hupka, J., & Rogala, A. (2019). Dimethyl ether (DME) as potential environmental friendly fuel. E3S Web of Conferences, 116, 00048.

Mamvura, T. A., & Danha, G. (2020). Biomass torrefaction as an emerging technology to aid in energy production. Heliyon, 6(3), e03531.

Marchionna, M., Patrini, R., Sanfilippo, D., & Migliavacca, G. (2008). Fundamental investigations on di-methyl ether (DME) as LPG substitute or make-up for domestic uses. Fuel Processing Technology, 89(12), 1255–1261.

Matsumoto, R., Ishihara, I., Ozawa, M., & Imahori, K. (2004). Development of low-NOx emission DME (Dimethyl Ether) combustor. JSME International Journal Series B, 47(2), 214–220.

MEMR. (2007). Kerosene to LPG conversion program 2007–2012. Ministry of Energy and Mineral Resources Republic of Indonesia.

MEMR. (2016a). Handbook of energy and economic statistics of Indonesia 2016. Ministry of Energy and Mineral Resources Republic of Indonesia.

MEMR. (2016b). Pencapaian program konversi s.d. tahun 2016. Ministry of Energy and Mineral Resources Republic of Indonesia.

Migliori, M., Aloise, A., Catizzone, E., & Giordano, G. (2014). Kinetic analysis of methanol to dimethyl ether reaction over H-MFI catalyst. Industrial & Engineering Chemistry Research, 53(38), 14885–14891.

Miller, B. (2015). Greenhouse gas – carbon dioxide emissions reduction technologies. Fossil Fuel Emissions Control Technologies (pp. 367–438). Elsevier.

Miller, B. G. (2011). Clean coal technologies for advanced power generation. Clean Coal Engineering Technology (pp. 251–300). Elsevier.

Naik, S. P., Ryu, T., Bui, V., Miller, J. D., Drinnan, N. B., & Zmierczak, W. (2011). Synthesis of DME from CO2/H2 gas mixture. Chemical Engineering Journal, 167(1), 362–368.

Nieuwenhuis, P., & Wells, P. (2003). Powertrain and fuel. The Automotive Industry and the Environment (pp. 73–86). Elsevier.

Ohno, Y. (2007). Slurry phase DME direct synthesis technology-100tons/day demonstration plant operation and scale up study. Stud Surf Sci Catal, 403–408.

Palo, D. R., Dagle, R. A., & Holladay, J. D. (2007). Methanol steam reforming for hydrogen production. Chemical Reviews, 107(10), 3992–4021.

Parbowo, H. S., Ardy, A., & Susanto, H. (2019). Techno-economic analysis of dimethyl ether production using oil palm empty fruit bunches as feedstock – a case study for Riau. IOP Conference Series: Materials Science and Engineering, 543, 012060.

Prins, M. J., Ptasinski, K. J., & Janssen, F. J. J. G. (2007). From coal to biomass gasification: Comparison of thermodynamic efficiency. Energy, 32(7), 1248–1259.

Samei, E., Taghizadeh, M., & Bahmani, M. (2012). Enhancement of stability and activity of Cu/ZnO/Al2O3 catalysts by colloidal silica and metal oxides additives for methanol synthesis from a CO2-rich feed. Fuel Processing Technology, 96, 128–133.

Sekretariat Jendral Dewan Energi Nasional. (2019). Laporan kajian penelaahan neraca energi nasional 2019. Kementerian Energi dan Sumber Daya Mineral, 1–79.

Semelsberger, T. A., Borup, R. L., & Greene, H. L. (2006). Dimethyl ether (DME) as an alternative fuel. Journal of Power Sources, 156(2), 497–511.

Semelsberger, T. A., Ott, K. C., Borup, R. L., & Greene, H. L. (2006). Generating hydrogen-rich fuel-cell feeds from dimethyl ether (DME) using physical mixtures of a commercial Cu/Zn/Al2O3 catalyst and several solid–acid catalysts. Applied Catalysis B: Environmental, 65(3–4), 291–300.

Shahrier, F., Eva, I. J., Afrin, M., Alam, C. S., & Rashid, A. R. M. H. (2020). Literature review on LCA of LPG as a transportation and cooking fuel. Proceedings of the International Conference on Industrial & Mechanical Engineering and Operations Management.

Shim, H. M., Lee, S. J., Yoo, Y. D., Yun, Y. S., & Kim, H. T. (2009). Simulation of DME synthesis from coal syngas by kinetics model. Korean Journal of Chemical Engineering, 26(3), 641–648.

Sugawa, S., Sayama, K., Okabe, K., & Arakawa, H. (1995). Methanol synthesis from CO2 and H2 over silver catalyst. Energy Conversion and Management, 36(6–9), 665–668.

Takanabe, K. (2017). Photocatalytic water splitting: Quantitative approaches toward photocatalyst by design. ACS Catalysis, 7(11), 8006–8022.

Tamagnini, P., Axelsson, R., Lindberg, P., Oxelfelt, F., Wünschiers, R., & Lindblad, P. (2002). Hydrogenases and hydrogen metabolism of Cyanobacteria. Microbiology and Molecular Biology Reviews, 66(1), 1–20.

Thoday, K., Benjamin, P., Gan, M., & Puzzolo, E. (2018). The mega conversion program from kerosene to LPG in Indonesia: Lessons learned and recommendations for future clean cooking energy expansion. Energy for Sustainable Development, 46, 71–81.

Vicente, J., Gayubo, A. G., Ereña, J., Aguayo, A. T., Olazar, M., & Bilbao, J. (2013). Improving the DME steam reforming catalyst by alkaline treatment of the HZSM-5 zeolite. Applied Catalysis B: Environmental, 130–131, 73–83.

von der Assen, N., Jung, J., & Bardow, A. (2013). Life-cycle assessment of carbon dioxide capture and utilization: Avoiding the pitfalls. Energy & Environmental Science, 6(9), 2721.

Wambach, J., Baiker, A., & Wokaun, A. (1999). CO2 hydrogenation over metal/zirconia catalysts. Physical Chemistry Chemical Physics, 1(22), 5071–5080.

Wu, N., Zhang, W., & Huang, Z. (2008). Impact of dimethyl ether on engine seal materials. Front Energy Power Eng China, 2(3), 279–284.

Wu, Z., & OuYang, D. (2017). Technical-economical analysis on co-gasification of coal and biomass based on the IGCC system with a two-staged gasifier. Energy Procedia, 142, 774–779.

Zha, F., Ding, J., Chang, Y., Ding, J., Wang, J., & Ma, J. (2012). Cu–Zn–Al oxide cores packed by metal-doped amorphous silica–alumina membrane for catalyzing the hydrogenation of carbon dioxide to dimethyl ether. Industrial & Engineering Chemistry Research, 51(1), 345–352.

Zha, F., Tian, H., Yan, J., & Chang, Y. (2013). Multi-walled carbon nanotubes as catalyst promoter for dimethyl ether synthesis from CO2 hydrogenation. Applied Surface Science, 285, 945–951.

Zhang, Y., Li, D., Zhang, Y., Cao, Y., Zhang, S., Wang, K., Ding, F., & Wu, J. (2014). V-modified CuO–ZnO–ZrO2/HZSM-5 catalyst for efficient direct synthesis of DME from CO2 hydrogenation. Catalysis Communications, 55, 49–52.

How to Cite
Lim, N., Felixius, V., & Weslie, T. (2021). Achieving Sustainable Energy Security in Indonesia Through Substitution of Liquefied Petroleum Gas with Dimethyl Ether as Household Fuel. Indonesian Journal of Energy, 4(2), 71-86.