Understanding the Potential of Bio-Carbon Capture and Storage from Biomass Power Plant in Indonesia
Abstract
Indonesia is currently experiencing a significant increase in population, industrialization and energy demand. As the energy demand increases, so does the production of climate-altering CO2 emission. Biomass power plants have emerged as a low carbon power generation alternative, utilizing agricultural and industrial waste. Biomass power plants have the potential of being a carbon-negative power generation technology in the near future by integrating carbon and capture storage (bio-CCS). The objective of this paper is to analyze and map potential CO2 emission in the processes of biomass power plants from gasification and firing or co-firing technology, then recommend suitable carbon capture technology based on the biomass power plant characteristics in Indonesia. The CO2 emission to be captured in the gasification process is 11-15% of the producer gas, while in co-firing it is 7-24% of the flue gas stream. Using biomass instead of coal in power plants reduces the electric efficiency and increases the plant’s in-house emission, but when analyzed in a wider boundary system it is apparent that the net GWP and CO2 emission of biomass power plants are way smaller than coal power plant, moreover when equipped with carbon capture unit. Biomass power plant that uses firing technology can reduce CO2 emission by 148% compared to typical coal power plant. Installing carbon capture unit in biomass firing power plants can further reduce the specific CO2 emission by 262%. If carbon capture technology is implemented to all existing biomass power plants in Indonesia, it could reduce the greenhouse gas emission up to 2.2 million tonnes CO2 equivalent annually. It is found that there are 3 significant designs for gasification technology: NREL design, Rhodes & Keith design and IGBCC+DeCO2 design. The first two designs are not suitable to be retrofitted into existing biomass power plants in Indonesia since they are based on a specific BCL/FERCO gasifier. While IGBCC+DeCO2 design still needs further study regarding its feasibility. While for firing, the most promising technology to be applied in the near future is solvent-based absorption because it is already on commercial scale for coal-based power plants and can be implemented for other source, e.g. biomass power plant. Bio-CCS in existing biomass power plant with firing technology is likely to be implemented in the near future compared to the gasification, because it applies the post combustion capture as an “end-of-pipe” technology which is generally seen as a more viable option to be retrofitted to existing power plants, resulting in potentially less expensive transition.
Downloads
References
Adams II, T. A., Hoseinzade, L., Madabhushi, P. B., & Okeke, I. (2017). Comparison of CO2 capture approaches for fossil-based power generation: Review and meta-study. Processes, 5. https://doi.org/10.3390/pr5030044
Anonymous. (2017). PLN perkuat kelistrikan berbasis energi terbarukan di Kalimantan. https://www.dunia-energi.com/pln-perkuat-kelistrikan-berbasis-energi-terbarukan-di-kalimantan/
Arachchige, U., Mohsin, M., & Melaaen, M. C. (2012). Optimization of post combustion carbon capture process-solvent selection. Energy and Environment, 3(6), 861-870.
Arasto, A. (2014). Bio-CCS : feasibility comparison of large scale carbon-negative solutions. Energy Procedia, 63, 6756 – 6769.
Arieza, U. (2017). Nih daftar lengkap 37 MoU dan 2 PPA milik PLN. https://economy.okezone.com/read/2017/05/19/320/1694955/nih-daftar-lengkap-37-mou-dan-2-ppa-milik-pln
Asadullah, M. (2014). Barriers of commercial power generation using biomass gasification gas : A review. Renewable and Sustainable Energy Reviews, 29, 201-205.
Asian Development Bank. (2019). Carbon dioxide-enhanced oil recovery in Indonesia. https://www.adb.org/sites/default/files/publication/557161/co2-enhanced-oil-recovery-indonesia.pdf
Bates, J., Edberg, O., & Nuttall, C. (2009). Minimising greenhouse gas emissions from biomass energy generation. Environment Agency.
Best, D., Mulyana, R., Jacobs, B., Iskandar, U. & Beck, B. (2011). Status of CCS development in Indonesia. Energy Procedia, 4, 6152-6156. https://doi.org/10.1016/j.egypro.2011.02.624
Berstad, D., Arasto, A., Jordal, K., & Haugen, G. (2011). Parametric study and benchmarking of NGCC, coal and biomass power cycles integrated with MEA-based post-combustion CO2 capture. Energy Procedia, 4, 1737–1744. https://doi.org/10.1016/j.egypro.2011.02.048
Boothman, T. (2017). Power sector : Commercial/regulatory update. [Powerpoint Slides]. https://www.pwc.com/id/en/energy-utilities-mining/assets/power/powerbreakfast/Commercial%20and%20Regulatory%20Update%20for%20the%20Power%20Industry%20in%20Indonesia%20FINAL%20-%20Tim%20Boothman.pdf
Brinkmann Consultancy. (2009). Greenhouse gas emissions from palm oil production : Literature review and proposals from the RSPO Working Group on Greenhouse Gases. http://www.rspo.org/sites/default/files/Report-GHG-October2009.pdf
Burton, S. (2009). Energy from wastewater - A feasibility study technical report. https://www.researchgate.net/publication/283908554_Energy_from_wastewater_-_A_feasibility_study_technical_report
Candra, S. A. (2016). Pertamina EP Subang jual CO2 untuk pengolahan makanan. https://republika.co.id/berita/ekonomi/korporasi/16/07/18/oaiavs368-pertamina-ep-subang-jual-co2-untuk-pengolahan-makanan
Carpentieri, M., Corti, A., & Lombardi, L. (2005). Life cycle assessment (LCA) of an integrated biomass gasification combined cycle (IBGCC) with CO2 removal. Energy Conversion and Management, 46(11–12), 1790–1808. https://doi.org/10.1016/j.enconman.2004.08.010
Ciferno, J., Klara, J., & Wimer, J. (2007). Outlook for carbon capture from pulverized coal and integrated gasification combined cycle power plant. CCS Economic Analyses.
Consoli, C. (2019). Bioenergy and carbon capture and storage. Global CCS Institute.
CTCN. (2014). Biomass combustion and co-firing for electricity and heat. https://www.ctc-n.org/technologies/biomass-combustion-and-co-firing-electricty-and-heat.
Dani, S. & Wibawa, A. (2018). Challenges and policy for biomass energy in Indonesia. International Journal of Business, Economics and Law, 15(5), 41-44.
Dennis, B., Mulyana, R. Jacobs, B., Iskandar, U. P., & Beck, B. (2011). Status of CCS development in Indonesia. Energy Procedia, 4, 6152 – 6156.
Doctor, R. D., Molburg, J. C., & Thimmapuram, P. R. (1997). Oxygen-blown gasification combined cycle : carbon dioxide recovery, transport, and disposal. Energy Conversion and Management, 38, S575-S580. https://doi.org/10.1016/S0196-8904(96)00330-5
Drax. (2020). Negative emissions pioneer Drax and leading global carbon capture company – Mitsubishi Heavy Industries Group – announce new BECCS pilot. https://www.drax.com/press_release/negative-emissions-pioneer-drax-and-leading-global-carbon-capture-company-mitsubishi-heavy-industries-group-announce-new-beccs-pilot/
E4tech. (2009). Review of technologies for gasification of biomass and wastes. http://wiki.gekgasifier.com/f/Review+of+Biomass+Gasification+Technologies.NNFCC.Jun09.pdf
Edström, E. & Öberg, C. (2013). Review of bionergy with carbon capture and storage (BECCS) and possibilities of introducing a small-scale unit. [Master of science thesis, KTH School]. KTH School of Industrial Engineering and Management.
Energia News. (2020). Komitmen pertamina power Indonesia untuk terus mengembangkan energi bersih. https://pertamina.com/id/news-room/energia-news/komitmen-pertamina-power-indonesia-untuk-terus-mengembangkan-energi-bersih
Engström, F. (1999). Overview of power generation from biomass. 1999 Gasification Technology Conference; 1999 October 19 – October 20; San Francisco, California.
European Biofuel Technology Platform (EBTP) & Zero Emission Fossil Fuel Power Plants (ZEP). (2012). Biomass with CO2 capture and storage. https://www.etipbioenergy.eu/images/EBTP-ZEP-Report-Bio-CCS-The-Way-Forward.pdf
Finney, K. N., Akram, M., Diego, M. E., Yang, X., & Pourkashanian, M. (2019). Carbon capture technologies. Bioenergy with Carbon Capture and Storage, 2, 15-45. https://doi.org/10.1016/B978-0-12-816229-3.00002-8
Firsawan, A. H. (2018). Dua investor asing bangun pembangkit listrik Rp 16,4 Triliun di Aceh. https://sumatra.bisnis.com/read/20180810/534/826827/dua-investor-asing-bangun-pembangkit-listrik-rp163-triliun-di-aceh
Fitriana, I., Anindhita, F., Sugiyono, A., Abdul Wahid, L. O., & Adiarso. (2017). Outlook energi Indonesia 2017: Inisiatif pengembangan teknologi energi bersih.
Garrido, L., Mumbunan, S., & Erdenesanaa, D. (2019). Indonesia charts a new, low carbon development path. Will other countries follow suit?. https://www.wri.org/blog/2019/03/indonesia-charts-new-low-carbon-development-path-will-other-countries-follow-suit
Global CCS Institute. (2012). Post Combustion Capture (PCC). CO2 Capture Technology.
Gokcol, C., Dursun, B., Alboyaci, Bora & Sunan, E. (2009). Importance of biomass energy as alternative to other sources in Turkey. Energy Policy, 37, 424-431.
Gough, C. & Upham, P. (2011). Biomass energy with carbon capture and storage (BECCS or Bio‐CCS). Greenhouse Gases: Science and Technology. 1. 324 - 334. https://doi.org/10.1002/ghg.34
Growth Asia. (2012). PLTU biomassa growth steel group.
Handoyo. (2019). PTPN V resmikan PLT biogas dengan kapasitas 700KW. https://industri.kontan.co.id/news/ptpn-v-resmikan-plt-biogas-dengan-kapasitas-700kw
Himawan, A. (2017). PLN gandeng empat pengembang energi terbarukan di Kalimantan. https://www.suara.com/bisnis/2017/05/17/165711/pln-gandeng-empat-pengembang-energi-terbarukan-di-kalimantan.
Hirschmann, R. (2020). Production volume of palm oil in Indonesia 2012-2019. https://www.statista.com/statistics/706786/production-of-palm-oil-in-indonesia/
Hogelund, C. (1981). Agricultural residues as fuel for producer gas generation. Report from a test series with coconut shells, coconut husks, wheat straw and sugar cane. https://www.osti.gov/etdeweb/biblio/8134444
Humas EBTKE. (2018, September 24). PLTBm Siantan, PLT biomassa swasta pertama di Kalimantan Barat. https://ebtke.esdm.go.id/post/2018/09/24/2022/pltbm.siantan.plt.biomassa.swasta.pertama.di.kalimantan.barat
Humas EBTKE. (2019). PLTBm Bambu Siberut terangi 3 desa, hemat biaya penyediaan listrik hingga 14 miliar. https://ebtke.esdm.go.id/post/2019/09/18/2340/pltbm.bambu.siberut.terangi.3.desa.hemat.biaya.penyediaan.listrik.hingga.14.miliar
Humas Prov. Kaltim. (2014). PLTU tambahan listrik dari Embalut dan Peaking. https://kaltimprov.go.id/berita/pltu-tambahan-listrik-dari-embalut-dan-peaking
Humas PTPN V. (2020). Di PTPN V, Menristek resmikan pemanfaatan listrik dari pembangkit listrik biogas.https://ptpn5.com/2020/03/di-ptpn-v-menristek-resmikan-pemanfaatan-listrik-dari-pembangkit-listrik-biogas/
IEA Bioenergy. (2009). Annual report 2009 IEA Bioenergy. https://www.ieabioenergy.com/wp-content/uploads/2013/10/IEA-Bioenergy-2009-Annual-Report.pdf
IKPT. (2019). Siberut PLTBm inaugurated. http://www.ikpt.com/blog/2019/09/18/siberut-pltbm-inaugurated/
Irawan, R. (2020). Tiga proyek CCUS-EOR bisa tekan emisi CO2 hingga 48 Juta Ton. https://www.dunia-energi.com/tiga-proyek-ccus-eor-bisa-tekan-emisi-co2-hingga-48-juta-ton/
Jonan, I. (2018). Renewable energy for sustainable development. [Powerpoint Slides]. https://berkas.dpr.go.id/ksap/pfsd2018/page/Ignasius%20Jonan.pdf
Kementrian Lingkungan Hidup dan Kehutanan. (2017). Portal data kementrian lingkungan hidup dan kehutanan. https://www.menlhk.go.id/site/single_post/171
Kementrian PPN. (2018). Resmikan perusahaan Independent Power Producer Biomassa Pertama di Kalimantan Barat, Mentri Bambang : PLTBm Siantan mampu produksi 15 MW. https://www.bappenas.go.id/id/berita-dan-siaran-pers/resmikan-perusahaan-independent-power-producer-biomassa-pertama-di-kalimantan-barat-menteri-bambang-pltbm-siantan-mampu-produksi/
Khalil, E. (2008). Steam power plants. https://doi.org/10.2495/978-1-84564-062-0/04
Khorshidi, Z., Ho, M. T., & Wiley, D. E. (2013). Techno-economic study of biomass co-firing with and without CO2 capture in an Australian black coal-fired power plant. Energy Procedia, 37, 6035–6042.
Kusuma, H. (2019). Pembangkit berbahan kayu bikin tebal kantong warga perbatasan. https://finance.detik.com/energi/d-4785792/pembangkit-berbahan-kayu-bikin-tebal-kantong-warga-perbatasan
Kusuma, H. (2019). Perbatasan Karimun punya pembangkit listrik berbahan bakar kayu. https://finance.detik.com/energi/d-4785744/perbatasan-karimun-punya-pembangkit-listrik-berbahan-bakar-kayu
Leung, D. Y.C., Caramanna, G., & Maroto-Valer, M. M. (2014). An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, 39, 426-443. https://doi.org/10.1016/j.rser.2014.07.093
Letcher, T. M. (2020). Future Energy : Improved Sustainable and Clean Options for our Planet, 3, 757-792. https://doi.org/10.1016/C2018-0-01500-5
Liu, H., Yin, X., & Wu, C. (2014). Comparative evaluation of biomass power generation systems in China using hybrid life cycle inventory analysis. The Scientific World Journal, 2014, 1–14. https://doi.org/10.1155/2014/735431
Mahamud, R., Khan, M. M., Rasul, M., & Leinster, M. (2011). Post combustion carbon capture and storage in existing coal power plant: importance and recent development. 8th Internatiol Conference on Heat Transfer, Fluid Mechanics, and Thermodynamics; 2011 July 11 – July 13; Pointe Aux Piments, Mauritus.
Mann, M. K., & Spath, P. L. (1997). Life cycle assessment of a biomass gasification combined-cycle system. National Renewable Energy Laboratory. https://www.osti.gov/servlets/purl/10106791-uAMrZ0/webviewable/
Mayhead, G. J. (2010). Biomass to electricity. California Agriculture, 66(1), 6-7.
McKendry, Peter. (2002). McKendry, P.: Energy production from biomass (Part 1): Overview of biomass. Bioresource technology. 83. 37-46.
Mohammed, M. A. A., Salmaiton, A., Mohamad, A., Omar, R., Taufiq-Yap., Y. H. & Fakhru’l-Razi, A. (2012). Catalytic gasification of empty fruit bunch for enhanced production of hydrogen rich fuel gas. Pertanika Jurnal Sci. & Technol, 20(1), 139-149.
Novianti, S., Biddinika, M. K., Prawisudha, P., & Yoshikawa, K. (2013). Upgrading of palm oil empty fruit bunch employing hydrothermal treatment in lab-scale and pilot scale. Procedia Environmental Science, 20, 46–54.
Ogada, T. & Werther, J. (1996). Combustion characteristics of wet sludge in a fluidized bed: Release and combustion of the volatiles. Fuel 1996, 75, 617–626.
Padang, Y. A., Mirmanto, M. , Syahrul, S., Sinarep, S., & Pandiatmi, P. (2020). Pemanfaatan energi alternatif dan terbarukan. Jurnal Karya Pengabdian, 2(2), 77-84.
Permatasari, R., Sugiyono, & Wulandari, N. (2011). Kajian pengaruh suhu terhadap densitas dan sifat reologi minyak sawit kasar. [Library of IPB University]. Institut Pertanian Bogor. https://repository.ipb.ac.id/handle/123456789/53063
PLN Enjiniring. (2017). Pembangkit Listrik Tenaga Biomassa (PLTBm). https://plne.co.id/uploads/Prospektus%20PLTBm.pdf
Primadita, D.S., Kumara, I. N. S., & Ariastina, W. G. (2020). A review on biomass for electricity generation in Indonesia. Journal of Electrical, Electronics, and Informatics, 4(1), 4.
Rahino, R. P. (2017). PT Carpediem targetkan operasional pembangkit listrik biomassa di Sintang tahun 2019. https://pontianak.tribunnews.com/2017/04/24/pt-carpediem-targetkan-operasional-pembangkit-listrik-biomassa-di-sintang-tahun-2019?page=2
Raksajati, A., Ho, M. T., & Wiley, D. (2018). Comparison of solvent development options for capture of CO2 from flue gases. Industrial & Engineering Chemistry Research, 57(19), B-K.
Raksajati, A., Ho, M. T., & Wiley, D. (2018b). Solvent development for post-combustion CO2 Capture: Recent development and opportunities. MATEC Web of Conferences, 156, 03015. https://doi.org/10.1051/matecconf/201815603015
REEP & LCORE-INDO. (2017). Bioenergy investment and project development in Indonesia. [Powerpoint Slides]. Lcore_book. http://202.67.11.4/lcore_book/office/output/document/104_publication_Bioenergy_Investment_and_Project_Development.pdf
Reijnders, L., & Huijbregts, M. A. J. (2008). Palm oil and the emission of carbon-based greenhouse gases. Journal of Cleaner Production, 16(4), 477–482. https://doi.org/10.1016/j.jclepro.2006.07.054
Restrepo-Valencia, S. & Walter, A. (2019). Techno-economic assessment of bio-energy with carbon capture and storage systems in a typical sugarcane mill in Brazil. Energies, 12(6), 1129.
Rhodes, J. S. & Keith, D. W. (2005). Engineering economic analysis of biomass IGCC with carbon capture and storage. Biomass & Bionergy, 29, 440-450.
Ricardo Energy & Environment. (2018). Analysing the potential of bioenergy with carbon capture in the UK to 2050. Report for BEIS, 4, 12-30.
Rubin, E. S., J. E. Davison, & H. J. Herzog. (2015). The cost of CO2 capture and storage. International Journal of Greenhouse Gas Control, 40, 378-400.
Rupani, P. F. R., Singh, P., Ibrahim, M. H., & Esa, N. (2010). Review of current palm oil mill effluent (POME) treatment methods: Vermicomposting as a sustainable practice. World Applied Sciences Journal, 11(1), 70-81.
Rycoft, M. (2019). Biomass gasification for large-scale electricity generation. https://www.ee.co.za/article/biomass-gasification-for-large-scale-electricity-generation.html#:~:text=However%20biomass%20gasification%20is%20expected,to%2020%20MWth%20or%20more
Sansaniwal, S.Rosen, M. & Tyagi, S. (2017). Global challenges in the sustainable development of biomass gasification: An overview. Renewable and Sustainable Energy Reviews, 80, 23-43. https://doi.org/10.1016/j.rser.2017.05.215
Senoaji, A. (2013). Upaya pengelolaan lingkungan hidup (UKL) dan upaya pemantauan lingkungan hidup (UPL). PT. Primanusa Energi Lestari.
Servert, J. & San Miguel, Guillermo. (2011). Hybrid solar - Biomass plants for power generation; technical and economic assessment. Global Nest Journal. 13.
Songolzadeh, M., Soleimani, M., Ravanchi, M. T., & Songolzadeh, R. (2014). Carbon dioxide separation from flue gases : A technological review emphasizing reduction in greenhouse gas emissions. The Scientific World Journal.
Spath, P. L. & Mann, M .K. (2004). Biomass power and conventional fossil systems with and without CO2 sequestration – Comparing the energy balance, greenhouse, gas emissions, and economics. U.S. Department of Commerce.
Sudaryanti, D. A., Fauzi, A., Dharmawan, A. H., & Putri, E. I. K. (2017). Bioenergi dan transformasi sosial ekonomi pedesaan. Sodiality : Jurnal Sosiologi Pedesaan, 5(3), 191-200.
Sugiyono, A., Adiarso, A., Dewi, R. E. P., Yudiarto, Y., Wijono, A., & Larasati, N. (2019). Analisis keekonomian pembangunan pembangkit listrik tenaga biogas dari POME dengan Continuous Stirred Tank Reactor (CSTR). Majalah Ilmiah Pengkajian Industri, 13(1), 1-92. https://doi.org/10.29122/mipi.v13i1.3232
Suharyati, Pambudi, S. H., Wibowo, J. L., & Pratiwi, N. I. (2019). Indonesia energy outlook 2019 (Vol. 1). https://doi.org/ISSN 2527-3000
Tobari, T. (2016). Kepala BPPT dan Bupati Pelalawan apreasiasi pembangungan PLTBg. http://infopublik.id/read/149655/kepala-bppt-dan-bupati-pelalawan-apresiasi-pembangunan-pltbg.html
Visvanathan, C., Setiadi, T., Herarth, G., & Shi, H. (2009). Eco‐industrial clusters in urban‐rural fringe areas. Asian Institute of Technology.
Wang, Y. & Zhao, L. (2017). A review of post-combustion CO2 capture technologies from coal-fired power plants. Energy Procedia, 114, 650-665. https://doi.org/10.1016/j.egypro.2017.03.1209
Winarto, Y. (2015). Selasa depan, KEK Sei Mangkei siap beroperasi. https://industri.kontan.co.id/news/selasa-depan-kek-sei-mangkei-siap-beroperasi.
World Bank. (2015). The Indonesia Carbon Capture Storage (CCS) capacity building program. [World Bank Document]. https://openknowledge.worldbank.org/bitstream/handle/10986/22804/Carbon0Capture00Plants0in0Indonesia.pdf?sequence=1&isAllowed=y
Xu, J.P., Huang, Q., Lv, C.G., Feng, Q., & Wang, F.J. (2018). Carbon emissions reductions oriented dynamic equilibrium strategy using biomass-coal co-firing. Energy Policy 2018, 123, 184–197.