Biomass Waste and Low Rank Coal Gasification Technology with Carbon Capture System to Optimize A Clean Energy Production as An Alternative Solution to Achieve Energy Security in Indonesia

  • Ardian N. Baskoro Institut Teknologi Bandung
  • Odara E. Aptari Institut Teknologi Bandung
Keywords: biomass, calcium, carbon capture, coal, gasification

Abstract

A shift into a more developed country means an increase in various aspects of economy, energy, social, and even environment. For Indonesia, a major change that the country needs to face is the increase of energy demand of 7% every year, reaching a final average expected energy consumption of 497.77 MTOE in 2050. In order to fulfil all upcoming energy demands and achieve energy security, it is crucial to utilize the available abundant resources that the country possesses. Two of these potential resources include coal (22.6 billion tons) and biomass (32.6 GW). Gasification is an alternative clean technology that can utilize low rank coal or biomass to convert it into syngas. The quality of syngas was characterized using the H2/CO ratio parameter. The greater the carbon density in a material, the greater H2/CO ratio will be. However, syngas produced from conventional gasification still emits CO2. Since CO2 is still emitted in coal gasification technology, a carbon capture system called HyPr-RING process is implemented as an alternative to reduce CO2 and increase the quality of syngas up to 91% volume of H2. The process uses CaO as a sorbent to capture CO2 and convert it into CaCO3 in a gasifier. Then, the CaCO3 is calcinated in a calciner to release back CaO that is recycled to capture more of the CO2. Aside from the high availability of coal and biomass, CaO as a major substance used in the CO2 capture process is also abundant in Indonesia (2,156 billion tons). This technology innovation is also economically feasible as it creates a net profit of USD 58,215 and ROI of 11%.

Downloads

Download data is not yet available.

Author Biographies

Ardian N. Baskoro, Institut Teknologi Bandung

Chemical Engineering Department, Faculty of Industrial Technology, Institut Teknologi Bandung

Odara E. Aptari, Institut Teknologi Bandung

Chemical Engineering Department, Faculty of Industrial Technology, Institut Teknologi Bandung

References

Aziz, M. (2010). Batu kapur dan peningkatan nilai tambah serta spesifikasi untuk industri. Jurnal Teknologi Mineral Dan Batubara, 3(6), 116–131.

Basu, P. (2013a). Design of biomass gasifiers. Biomass Gasification, Pyrolysis and Torrefaction. https://doi.org/10.1016/b978-0-12-396488-5.00008-3

Basu, P. (2013b). Gasification theory. Biomass Gasification, Pyrolysis and Torrefaction. https://doi.org/10.1016/b978-0-12-396488-5.00007-1

Brar, J. S., Singh, K., Wang, J., & Kumar, S. (2012). Cogasification of coal and biomass: A review. International Journal of Forestry Research, 2012, 1–10. https://doi.org/10.1155/2012/363058

Chen, G., Zhang, Y., Zhu, J., Cao, Y., & Pan, W. (2011). Coal and biomass partial gasification and soot properties in an atmospheric fluidized bed. Energy and Fuels, 25(5), 1964–1969. https://doi.org/10.1021/ef101754v

Gielen, D., Saygin, D., & Rigter, J. (2017). Renewable energy prospects: Indonesia, a RE map analysis. International Renewable Energy Agency (IRENA).https://doi.org/10.1145/347642.347800

Guan, G. (2017). Clean coal technologies in Japan: A review. Chinese Journal of Chemical Engineering, 25(6), 689–697. https://doi.org/10.1016/j.cjche.2016.12.008

Hardianto, T., Amalia, A. R., Suwono, A., & Riauwindu, P. (2015). Study of Indonesia low rank coal utilization on modified fixed bed gasification for combined cycle power plant. IOP Conference Series: Materials Science and Engineering, 88(1). https://doi.org/10.1088/1757-899X/88/1/012042

Karimipour, S., Gerspacher, R., Gupta, R., & Spiteri, R. J. (2013). Study of factors affecting syngas quality and their interactions in fluidized bed gasification of lignite coal. Fuel, 103, 308–320. https://doi.org/10.1016/j.fuel.2012.06.052

Kementerian Energi dan Sumber Daya Mineral. (2016). Data Inventory Emisi GRK Sektor Energi. https://www.esdm.go.id/assets/media/content/content-data-inventory-emisi-grk-sektor-energi-.pdf

Lin, S. (2013). Development of in-situ CO2 capture coal utilization technologies. Energy Procedia, 37, 99–106. https://doi.org/10.1016/j.egypro.2013.05.089

Lin, S., Kiga, T., Nakayama, K., & Suzuki, Y. (2011). Coal power generation with in-situ CO2 capture-HyPr-RING method: Effect of ash separation on plant efficiency. Energy Procedia, 4, 378–384. https://doi.org/10.1016/j.egypro.2011.01.065

Pereira, E. G., Da Silva, J. N., De Oliveira, J. L., & MacHado, C. S. (2012). Sustainable energy: A review of gasification technologies. Renewable and Sustainable Energy Reviews, 16(7), 4753–4762. https://doi.org/10.1016/j.rser.2012.04.023

Ptasinski, K. J. (2008). Thermodynamic efficiency of biomass gasification and biofuels conversion. Biofuels, Bioproducts and Biorefining, 2, 239–253. https://doi.org/10.1002/bbb.65

Purohit, P. (2009). Economic potential of biomass gasification projects under clean development mechanism in India. Journal of Cleaner Production, 17(2), 181–193. https://doi.org/10.1016/j.jclepro.2008.04.004

RUEN. (2017). Perpres 22/2017_RUEN. 6. https://www.esdm.go.id/assets/media/content/content-rencana-umum-energi-nasional-ruen.pdf

Stanford, C. E. (2013). Coal resources, production and use in Indonesia. The Coal Handbook: Towards Cleaner Production, 2. https://doi.org/10.1533/9781782421177.2.200

Suharyati, Pambudi, S. H., Wibowo, J. L., & Pratiwi, N. I. (2019). Indonesia Energy Outlook 2019 (Vol. 1). https://doi.org/ISSN 2527-3000

Susanto, H., Suria, T., & Pranolo, S. H. (2018). Economic analysis of biomass gasification for generating electricity in rural areas in Indonesia. IOP Conference Series: Materials Science and Engineering, 334(1). https://doi.org/10.1088/1757-899X/334/1/012012

Tun, M. M., Juchelkova, D., Win, M. M., Thu, A. M., & Puchor, T. (2019). Biomass energy: An overview of biomass sources, energy potential, and management in Southeast Asian countries. Resources, 8(2). https://doi.org/10.3390/resources8020081

Wei, L., Thomasson, J. A., Bricka, R. M., Sui, R., Wooten, J. R., & Columbus, E. P. (2009). Syn-gas quality evaluation for biomass gasification with a downdraft gasifier. Transactions of the ASABE, 52(1), 21–37.

Zhang, H., Zhang, Y., Zhu, Z., & Lu, Q. (2016). Circulating fluidized bed gasification of low rank coal: Influence of O2/C molar ratio on gasification performance and sulphur transformation. Journal of Thermal Science, 25(4), 363–371. https://doi.org/10.1007/s11630-016-0872-9

Zuldian, P., Fukuda, S., & Bustan, M. D. (2017). Economic analysis of coal gasification plant for electricity and thermal energy supplies in Indonesia. Journal of Clean Energy Technologies, 5(3), 193–198. https://doi.org/10.18178/jocet.2017.5.3.368

Published
2020-08-31
How to Cite
Baskoro, A. N., & Aptari, O. E. (2020). Biomass Waste and Low Rank Coal Gasification Technology with Carbon Capture System to Optimize A Clean Energy Production as An Alternative Solution to Achieve Energy Security in Indonesia. Indonesian Journal of Energy, 3(2), 55-67. https://doi.org/10.33116/ije.v3i2.90