The Impacts of Emission Reduction Targets in Indonesia Electricity Systems

An Energy-Economy-Environment Model Simulation

  • Muhammad Indra al Irsyad Ministry of Energy and Mineral Resources
  • Anthony Halog School of Earth and Environmental Science, University of Queensland
  • Rabindra Nepal Tasmanian School of Business and Economics, University of Tasmania
  • Deddy P. Koesrindartoto School of Business and Management, Institut Teknologi Bandung
Keywords: linear programming, agent-based modelling (ABM), input-output analysis, life-cycle analysis

Abstract

Climate change policy often contradicts the least-cost objective of electricity generation in developing countries. The objective of our study is to propose electricity generation mixes that can meet emission reduction targets in Indonesia. We estimate the optimal generation mix, costs, and emissions from three scenarios, namely existing power plant planning, and 11% and 14% emission reductions in Indonesia’s electricity sector. The estimations are based on linear programming, input-output analysis, and life-cycle analysis, integrated into an agent-based modeling (ABM) platform. The simulation results confirm the existing power plant planning, which is dominated by coal-based power plants, as the lowest-cost scenario in the short-term; however, this scenario also produces the highest emissions. Emission reduction scenarios have lower emissions due to a higher share of renewables and, therefore, the Indonesian electricity system is robust from fossil fuel price increases. In the long-term, costs incurred in the emission reduction scenarios will be lower than electricity generation costs under the existing power plant planning. Our findings should be a basis for re-evaluating energy policies, power plant planning, and the research agenda in Indonesia.

Downloads

Download data is not yet available.

Author Biographies

Muhammad Indra al Irsyad, Ministry of Energy and Mineral Resources
Research and Development Centre of Electricity, Renewable Energy and Energy Conservation Technologies, Ministry of Energy and Mineral Resources, Jakarta, Indonesia School of Earth and Environmental Science, University of Queensland, St Lucia, Australia
Anthony Halog, School of Earth and Environmental Science, University of Queensland

School of Earth and Environmental Science, University of Queensland, St Lucia, Australia

Rabindra Nepal, Tasmanian School of Business and Economics, University of Tasmania
Tasmanian School of Business and Economics, University of Tasmania, Hobart, Tasmania, Australia
Deddy P. Koesrindartoto, School of Business and Management, Institut Teknologi Bandung

School of Business and Management, Institut Teknologi Bandung, Bandung, Indonesia

References

Al Hasibi, R. A., Hadi, S. P., & Widiastuti, A. N. (2013a). Optimizing geothermal energy and hydro power in capacity expansion at the electrical system of Java-Madura-Bali. International Journal of Engineering and Computer Science IJECS-IJENS, 13(1), 1-8.

Al Hasibi, R. A., Hadi, S. P., & Widiastuti, A. N. (2013b). Optimizing Geothermal Energy and Hydro Power in Capacity Expansion at the Electrical System of Java-Madura-Bali. International Journal of Engineering & Computer Science, 13(01), 8.

Al Irsyad, M. I., Halog, A., & Nepal, R. (2018a). Estimating Effectiveness and Efficiency of Solar Energy Policy for Indonesia: A Hybrid Agent-Based Model Analysis. Paper presented at the The IAFOR International Conference on Sustainability, Energy & the Environment, Honolulu, USA.

Al Irsyad, M. I., Halog, A., & Nepal, R. (2018b). Exploring Drivers of Sectoral Electricity Demand in Indonesia. Energy Sources, Part B: Economics, Planning, and Policy, 13(9-10), 383-391.

Al Irsyad, M. I., Halog, A., & Nepal, R. (2019a). Estimating the impacts of financing support policies towards photovoltaic market in Indonesia: A social-energy-economy-environment model simulation. Journal of environmental management, 230, 464-473.

Al Irsyad, M. I., Halog, A., & Nepal, R. (2019b). Renewable energy projections for climate change mitigation: An analysis of uncertainty and errors. Renewable Energy, 130, 536-546.

Al Irsyad, M. I., Halog, A., Nepal, R., & Koesrindartoto, D. P. (2019). PowerGen-ABM (Version 1.0.0): CoMSES Computational Model Library. Retrieved from https://www.comses.net/codebases/b2417087-a54d-4d75-8346-8075d2d48d98/releases/1.0.0/

Al Irsyad, M. I., Halog, A. B., Nepal, R., & Koesrindartoto, D. P. (2017). Selecting Tools for Renewable Energy Analysis in Developing Countries: An Expanded Review. Frontiers in Energy Research, 5(34). doi:10.3389/fenrg.2017.00034

Bhattacharyya, S. C., & Timilsina, G. R. (2010). Modelling energy demand of developing countries: Are the specific features adequately captured? Energy policy, 38(4), 1979-1990.

Cherubini, F., Bargigli, S., & Ulgiati, S. (2009). Life cycle assessment (LCA) of waste management strategies: Landfilling, sorting plant and incineration. Energy, 34(12), 2116-2123.

Das, A., & Ahlgren, E. O. (2010). Implications of using clean technologies to power selected ASEAN countries. Energy Policy, 38(4), 1851-1871.

DGE. (2015). Faktor Emisi Pembangkit Listrik Sistem Interkoneksi Tahun 2010 - 2014. Retrieved from: https://djk.esdm.go.id/pdf/Faktor%20Emisi%20Gas%20Rumah%20Kaca/Faktor%20Emisi%20GRK%20Tahun%202011-2014.pdf

DJK. (2018). Statistik Ketenagalistrikan 2017. Jakarta: General Directorate of Electricity (DJK) - Ministry of Energy and Mineral Resources (MEMR).

Ghenai, C. (2012). Life Cycle Analysis of Wind Turbine. In C. Ghenai (Ed.), Sustainable Development - Energy, Engineering and Technologies - Manufacturing and Environment: InTech.

Peraturan Pemerintah Nomor 79 Tahun 2014 tentang Kebijakan Energi Nasional, (2014).

Peraturan Pemerintah Nomor 28 Tahun 2016 tentang Besaran dan Tata Cara Pemberian Bonus Produksi Panas Bumi, (2016).

Peraturan Presiden Republik Indonesia Nomor 22 Tahun 2017 tentang Rencana Umum Energi Nasional, (2017a).

Presidential Decree No. 22/ 2017 on General National Energy Plan, (2017b).

Gonzalez-Salazar, M. A., Kirsten, T., & Prchlik, L. (2017). Review of the operational flexibility and emissions of gas-and coal-fired power plants in a future with growing renewables. Renewable and Sustainable Energy Reviews.

Handayani, K., Krozer, Y., & Filatova, T. (2017). Trade-offs between electrification and climate change mitigation: An analysis of the Java-Bali power system in Indonesia. Applied energy, 208, 1020-1037.

IEA. (2017). World Energy Outlook 2017. Retrieved from Paris:

IEA, & NEA. (2015). Projected Costs of Generating Electricity – 2015 Edition. Retrieved from Paris:

Koroneos, C. J., & Nanaki, E. A. (2012). Integrated solid waste management and energy production-a life cycle assessment approach: the case study of the city of Thessaloniki. Journal of Cleaner Production, 27, 141-150.

Kumar, S. (2016). Assessment of renewables for energy security and carbon mitigation in Southeast Asia: The case of Indonesia and Thailand. Applied Energy, 163, 63-70.

Ma, T., & Nakamori, Y. (2009). Modeling technological change in energy systems–from optimization to agent-based modeling. Energy, 34(7), 873-879.

MacKenzie, A. (2016). NetLogoLPSolver extension (Version NetLogov5.x). Retrieved from https://github.com/AFMac/NetLogoLPSolver

Maulidia, M., Dargusch, P., Ashworth, P., & Ardiansyah, F. (2019). Rethinking renewable energy targets and electricity sector reform in Indonesia: A private sector perspective. Renewable and Sustainable Energy Reviews, 101, 231-247. doi:https://doi.org/10.1016/j.rser.2018.11.005

Meier, P. J. (2002). Life-cycle assessment of electricity generation systems and applications for climate change policy analysis: University of Wisconsin--Madison.

Peraturan Menteri Energi dan Sumber Daya Mineral Nomor 2 tahun 2011 tentang Penugasan kepada PT Perusahaan Listrik Negara (Persero) untuk Melakukan Pembelian Tenaga Listrik dari Pembangkit Listrik Tenaga Panas Bumi dan Harga Patokan Pembelian Tenaga Listrik oleh PT Perusahaan Listrik Negara (Persero) dari Pembangkit Listrik Tenaga Panas Bumi, (2011).

Peraturan Menteri Energi dan Sumber Daya Mineral Nomor 4 Tahun 2012 tentang Harga Pembelian Tenaga Listrik oleh PT PLN (Persero) dari Pembangkit Tenaga Listrik Yang Menggunakan Energi Terbarukan Skala Kecil dan Menengah atau Kelebihan Tenaga Listrik, (2012a).

Peraturan Menteri Energi dan Sumber Daya Mineral Nomor 22 tahun 2012 tentang Penugasan kepada PT Perusahaan Listrik Negara (Persero) untuk Melakukan Pembelian Tenaga Listrik dari Pembangkit Listrik Tenaga Panas Bumi dan Harga Patokan Pembelian Tenaga Listrik oleh PT Perusahaan Listrik Negara (Persero) dari Pembangkit Listrik Tenaga Panas Bumi, (2012b).

Peraturan Menteri Energi dan Sumber Daya Mineral Nomor 17 Tahun 2014 tentang Pembelian Tenaga Listrik dari PLTP dan Uap Panas Bumi untuk PLTP oleh PT Perusahaan Listrik Negara (Persero), (2014).

Peraturan Menteri Energi dan Sumber Daya Mineral Nomor 44 Tahun 2015 tentang Pembelian Tenaga Listrik dari Pembangkit Listrik Tenaga Air dengan Kapasitas Sampai Dengan 10 MW oleh PT Perusahaan Listrik Negara (Persero), (2015).

Peraturan Menteri Energi dan Sumber Daya Mineral Nomor 12 Tahun 2017 tentang Pemanfaatan Sumber Energi Terbarukan untuk Penyediaan Tenaga Listrik, (2017).

Pfenninger, S., Hawkes, A., & Keirstead, J. (2014). Energy systems modeling for twenty-first century energy challenges. Renewable and Sustainable Energy Reviews, 33, 74-86.

PLN. (2011). Statistik PLN 2010. Retrieved from Jakarta:

PLN. (2012). Statistik PLN 2011. Retrieved from Jakarta:

PLN. (2013). Statistik PLN 2012. Retrieved from Jakarta:

PLN. (2014). Statistik PLN 2013. Retrieved from Jakarta:

PLN. (2015). Statistik PLN 2014. Retrieved from Jakarta:

PLN. (2016a). Rencana Usaha Penyediaan Tenaga Listrik PT PLN (Persero) 2016 - 2025. Retrieved from Jakarta:

PLN. (2016b). Statistik PLN 2015. Retrieved from Jakarta:

PLN. (2017). Statistik PLN 2016. Retrieved from Jakarta:

REN21. (2019). Renewables 2019 Global Status Report. Retrieved from Paris:

Siagian, U., Yuwono, B., Fujimori, S., & Masui, T. (2017). Low-carbon energy development in Indonesia in alignment with Intended Nationally Determined Contribution (INDC) by 2030. Energies, 10(1), 52.

Smajgl, A., & Bohensky, E. (2013). Behaviour and space in agent-based modelling: Poverty patterns in East Kalimantan, Indonesia. Environmental modelling & software, 45, 8-14.

Sullivan, J., Clark, C., Han, J., & Wang, M. (2010). Life-cycle analysis results of geothermal systems in comparison to other power systems. Retrieved from

Tahara, K., Kojima, T., & Inaba, A. (1997). Evaluation of CO 2 payback time of power plants by LCA. Energy Conversion and Management, 38, S615-S620.

Tanoto, Y., & Wijaya, M. E. (2011). Economic and environmental emissions analysis in Indonesian electricity expansion planning: low-rank coal and geothermal energy utilization scenarios. Paper presented at the Clean Energy and Technology (CET), 2011 IEEE First Conference on.

UCDavis. (2016). Energy Cost Calculator. Retrieved from https://biomass.ucdavis.edu/tools/energy-cost-calculator/

Utama, N. A., Ishihara, K. N., & Tezuka, T. (2012). Power generation optimization in ASEAN by 2030. Energy and Power Engineering, 4(04), 226.

Wijaya, M. E., & Limmeechokchai, B. (2009). Supply Security Improvement of long term electricity expansion planning of Java-Madura-Bali system in Indonesia. Thammasat Int. J. Sc. Tech, 14(4), 1-14.

Wijaya, M. E., & Limmeechokchai, B. (2010). The hidden costs of fossil power generation in Indonesia: A reduction approach through low carbon society. Songklanakarin Journal of Science & Technology, 32(1).

Wilensky, U. (1999). NetLogo (Version 5.3.b1). Evanston, Illinois USA: Center for Connected Learning and Computer-Based Modeling, Northwestern University. Retrieved from http://ccl.northwestern.edu/netlogo/

Zakeri, B., Syri, S., & Rinne, S. (2015). Higher renewable energy integration into the existing energy system of Finland–Is there any maximum limit? Energy, 92, 244-259.

Published
2019-08-30
How to Cite
Irsyad, M. I. al, Halog, A., Nepal, R., & Koesrindartoto, D. P. (2019). The Impacts of Emission Reduction Targets in Indonesia Electricity Systems. Indonesian Journal of Energy, 2(2), 118-130. https://doi.org/10.33116/ije.v2i2.42