Big Data and Satellite Imagery for Energy Efficiency Mapping in Indonesia:
A Future Shaped by Advanced Analytics
Abstract
In the sophisticated realm of big data, analyzing energy efficiency in Indonesia has become crucial for identifying savings opportunities. This study utilizes large-scale raster data, including CO2 emissions from the OCO-2 GEOS satellite, nocturnal satellite images from VIIRS, and demographic and infrastructural data from WorldPOP and EsriWorld Cover. Through advanced regression techniques in machine learning—Support Vector Regression, Artificial Neural Network, and particularly Random Forest—the research analyzes and forecasts energy efficiency across various Indonesian provinces. The analysis highlights a notable increase in CO2 emissions from 2019 to 2023, with a significant reduction in night-time light emissions in 2020 due to the pandemic, which temporarily decreased human activities. Despite these fluctuations, the continuous increase in population density and built-up areas underscores the persistent influence of urbanization on emissions. The Random Forest model, which provided the most accurate predictions, indicates an expected rise in total CO2 emissions until 2030, driven by urbanization and economic growth, followed by a decline by 2045 due to targeted governmental policies. These insights contribute significantly to understanding the distribution of energy efficiency and support the development of sustainable energy policies in Indonesia. The study not only enriches scientific literature but also guides policy-making, offering a framework for tailored energy efficiency improvements. This research marks a pivotal advancement in utilizing big data and satellite technology to optimize energy use in a context that was previously underexplored.
Downloads
References
Al-Mamoori, A., Krishnamurthy, A., Rownaghi, A. A., & Rezaei, F. (2017). Carbon capture and utilization update. Energy Technology, 5(6), 834–849. https://doi.org/10.1002/ente.201600747
Allangawi, A., Alzaimoor, E. F., Shanaah, H. H., Mohammed, H. A., Saqer, H., El-Fattah, A. A., & Kamel, A. H. (2023). Carbon capture materials in post-combustion: adsorption and absorption-based processes. C Journal of Carbon Reserach, 9(1), 17. https://doi.org/10.3390/c9010017
Amount, O., & Bopp, L. (2006). Globalizing results from ocean in situ iron fertilization studies. Global Biogeochemical Cycle, 20(2), 20. https://doi.org/https://doi.org/10.1029/2005GB002591
Bashir, A., Ali, M., Patil, S., Aljawad, M. S., Mahmoud, M., Al-Shehri, D., Hoteit H., & Kamal, M. S. (2024). Comprehensive review of CO2 geological storage: Exploring principles, mechanisms, and prospects. Earth-Science Reviews, 249, 104672. https://doi.org/10.1016/j.earscirev.2023.104672
Ben-Mansour, R., Habib, M. A., Bamidele, O. E., Basha, M., Qasem, N. A. A., Peedikakkal, A., Laoui T., & Ali, M.J (2016). Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations - A review. Applied Energy, 161, 225–255. https://doi.org/10.1016/j.apenergy.2015.10.011
Best, D., Mulyana, R., Jacobs, B., Iskandar, U. P., & Beck, B. (2011). Status of CCS development in Indonesia. Energy Procedia, 4, 6152-6156. https://doi.org/10.1016/j.egypro.2011.02.624
Chiang, C. L., Lee, C. M., & Chen, P. C. (2011). Utilization of the Cyanobacteria Anabaena sp. CH1 in Biological Carbon Dioxide Mitigation Processes. Bioresource Technology, 102(9), 5400–5405. https://doi.org/10.1016/j.biortech.2010.10.089
Chiu, S. Y., Kao, C. Y., Tsai, M. T., Ong, S. C., Chen, C. H., & Lin, C. S. (2009). Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technology, 100(2), 833–838. https://doi.org/10.1016/j.biortech.2008.06.061
Cuéllar-Franca, R. M., & Azapagic, A. (2015). Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts. Journal of CO2 utilization, 9, 82-102.
Daneshvar, E., Wicker, R. J., Show, P. L., & Bhatnagar, A. (2022). Biologically-mediated carbon capture and utilization by microalgae towards sustainable CO2 biofixation and biomass valorization – A review. Chemical Engineering Journal, 427(April 2021), 130884. https://doi.org/10.1016/j.cej.2021.130884
Global CCS Institute. (2022). Global Status of CCS 2022 : Global CCS Institute Report. Global CCS Institute.
Hanson, E., Nwakile, C., & Hammed, V. O. (2024). Carbon Capture, Utilization, and Storage (CCUS) technologies: Evaluating the effectiveness of advanced CCUS solutions for reducing CO2 emissions. Results in Surfaces and Interfaces, 18, 100381. https://doi.org/10.1016/j.rsurfi.2024.100381
Lam, M. K., Lee, K. T., & Mohamed, A. R. (2012). Current status and challenges on microalgae-based carbon capture. International Journal of Greenhouse Gas Control, 10, 456–469. https://doi.org/10.1016/j.ijggc.2012.07.010
Li, G., Xiao, W., Yang, T., & Lyu, T. (2023). Optimization and process effect for microalgae carbon dioxide fixation technology applications based on carbon capture: A comprehensive review. C Journal of Carbon Research, 9(1), 35. https://doi.org/10.3390/c9010035
Li, S., Li, X., & Ho, S.-H. (2022). How to enhance carbon capture by evolution of microalgal photosynthesis? Separation and Purification Technology, 291, 120951. https://doi.org/http://dx.doi.org/10.1016/j.seppur.2022.120951
Liu, X., Liu, X., & Zhang, Z. (2024). Application of red mud in carbon capture, utilization and storage (CCUS) technology. Renewable and Sustainable Energy Reviews, 202, 114683.
Madejski, P., Chmiel, K., Subramanian, N., & Kuś, T. (2022). Methods and techniques for CO2 capture: Review of potential solutions and applications in modern energy technologies. Energies, 15(3), 887. https://doi.org/10.3390/en15030887
Markewitz, P., Kuckshinrichs, W., Leitner, W., Linssen, J., Zapp, P., Bongartz, R., Schreiber A., & Müller, T. E. (2012). Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy and Environmental Science, 5(6), 7281–7305. https://doi.org/10.1039/c2ee03403d
Mondal, M., Goswami, S., Ghosh, A., Oinam, G., Tiwari, O. N., Das, P., Gayen, K., Mandal, M.K. & Halder, G. N. (2017). Production of biodiesel from microalgae through biological carbon capture: a review. 3 Biotech, 7(2), 1–21. https://doi.org/10.1007/s13205-017-0727-4
Morais, M. G. De, Alberto, J., & Costa, V. (2007). Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Conversion and Management, 48(7), 2169–2173. https://doi.org/https://doi.org/10.1016/j.enconman.2006.12.011
Olaizola, M., & Bridges, T. (2004). Microalga removal of CO2 from flue gases: CO2 capture from a coal combustor. Biotechnology and Bio-Process Engineering, 8, 360-367.
Ota, M., Kato, Y., Watanabe, H., Watanabe, M., Sato, Y., Smith, R. L., & Inomata, H. (2009). Fatty acid production from a highly CO2 tolerant alga, Chlorocuccum littorale, in the presence of inorganic carbon and nitrate. Bioresource Technology, 100(21), 5237–5242. https://doi.org/10.1016/j.biortech.2009.05.048
PPID KLHK RI. (2022, Oktober 2). Enhanced NDC: Komitmen Indonesia untuk makin berkontribusi dalam menjaga suhu global. https://ppid.menlhk.go.id/berita/siaran-pers/6836/enhanced-ndc-komitmen-indonesia-untuk-makin-berkontribusi-dalam-menjaga-suhu-global
Prayitno, J., Admirasari, R., Sudinda, T. W., & Winanti, W. S. (2021). Teknologi penangkatan karbon dengan mikroalga: Peluang dan tantangan dalam mitigasi perubahan iklim. Jurnal Rekayasa Lingkungan, 14(2), 91–100.
Prescouter. (2024). The top 10 carbon capture projects in 2024. Prescouter. https://www.prescouter.com/report/top-ten-carbon-capture-projects-2024/
Rubin, E. S., Mantripragada, H., Marks, A., Versteeg, P., & Kitchin, J. (2012). The outlook for improved carbon capture technology. Progress in Energy and Combustion Science, 38(5), 630–671. https://doi.org/10.1016/j.pecs.2012.03.003
Singh, J., & Dhar, D. W. (2019). Overview of carbon capture technology: Microalgal biorefinery concept and state-of-the-art. Frontiers in Marine Science, 6, 1–9. https://doi.org/10.3389/fmars.2019.00029
Sreenivasulu, B., Gayatri, D. V., Sreedhar, I., & Raghavan, K. V. (2015). A journey into the process and engineering aspects of carbon capture technologies. Renewable and Sustainable Energy Reviews, 41, 1324–1350. https://doi.org/10.1016/j.rser.2014.09.029
Sydney, E. B., Sturm, W., de Carvalho, J. C., Thomaz-Soccol, V., Larroche, C., Pandey, A., & Soccol, C. R. (2010). Potential carbon dioxide fixation by industrially important microalgae. Bioresource Technology, 101(15), 5892–5896. https://doi.org/10.1016/j.biortech.2010.02.088
US Energy Information Administration. (2016). International Energy Outlook 2016. US Energy Information Administration.
Valdovinos-García, E. M., Juan Barajas-Fernández, María de los Ángeles Olán-Acosta, Moisés Abraham Petriz-Prieto, Adriana Guzmán-López, & Micael Gerardo Bravo-Sánchez. (2020). Techno-Economic Study of CO 2 Capture of a Thermoelectric Plant Using Microalgae (Chlorella vulgaris) for Production of Feedstock for Bioenergy. Energies, 13(2), 1–19.
Wang, B., & Lan, C. Q. (2010). Biofixation of carbon dioxide (CO2) by microorganisms. Developments and Innovation in Carbon Dioxide (CO2), 2, 411–432. https://doi.org/10.1533/9781845699581.4.411
World Health Organization. (2021). WHO global air quality guidelines. World Health Organization. https://www.who.int/publications/i/item/9789240034228
Zhang, Z., Borhani, T. N. G., & El-Naas, M. H. (2018). Carbon Capture. In I. Dincer, A. Midilli, & M. A. Rosen (Eds.), Exergetic, energetic and environmental dimensions (pp. 455–478). Elsevier. https://doi.org/10.1016/B978-0-12-813734-5.00056-1
Zhao, S., Liu, P., Niu, Y., Chen, Z., Khan, A., Zhang, P., & Li, X. (2018). A novel early warning system based on a sediment microbial fuel cell for in situ and real time hexavalent chromium detection in industrial wastewater. Sensors (Switzerland), 18(2), 1–15. https://doi.org/10.3390/s18020642
Copyright (c) 2025 Firman Afrianto, Andini Putri Salsabillah, Annisa Dira Hariyanto

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.