Efficiency and Electrical Power Consumption Analysis of Gasification Stove Fueled by Used Cooking Oil as A Renewable Energy Alternative
Keywords:
renewable energy, stove efficiency, used cooking oil stove, waste to energyAbstract
Gasification stoves that utilize used cooking oil as fuel represent a significant innovation in renewable energy. People generally perceive used cooking oil as cooking oil that is no longer suitable for frying, often discarding it as waste or selling it to collectors for export and biodiesel production. However, used cooking oil can be repurposed as stove fuel, presenting an advancement in appropriate waste-to-energy technology. This approach enables cooking oil that is no longer used for frying to serve as a renewable fuel source for stoves. This study aims to analyze the efficiency of used cooking oil stoves by employing a gasification mechanism to accelerate heating. The efficiency evaluation includes thermal efficiency, measured using the Water Boiling Test method, along with values for Fuel Consumption Rate (FCR), Combustion Input Power (Pin), and Combustion Output Power (Pout). Thus, our study is the first to comprehensively evaluate the performance of used cooking oil (UCO)-fueled gasification stoves by analyzing these metrics, addressing a research gap in prior studies. Testing and analysis were conducted using water samples of three different volumes: 1 liter, 2 liters, and 3 liters. The results indicate thermal efficiency rates of 30.49 % for 1 liter of water, 15.54 % for 2 liters, and 16.45 % for 3 liters. The highest recorded FCR value is 1 liter/hour, the largest Pin value is 8,246.10 watts, and the highest Pout value is 1,481.28 watts. The decline in thermal efficiency and output power is attributed to the stove’s design. Specifically, the blower pipe air hole is positioned perpendicular to the blower pipe within the combustion chamber. As a result, the flames primarily strike the combustion chamber walls, with only a portion of the reflected heat directed toward the container holding boiling water. This leads to excessive heating within the combustion chamber, while the temperature of the flames reaching the water container remains relatively lower. The electrical power consumption of the stove is measured at 10.89 watts. As a contribution, our study provides an alternative cooking solution that supports Indonesia’s energy diversification efforts by reducing reliance on LPG and alleviating the government’s subsidy burden.
Downloads
References
Aryansyah, M. F., Santoso, H., & Nurdin, M. F. (2022). Analisis Efisiensi Termal Pada Kompor Biomassa Dengan Menggunakan Water Boiling Test (WBT). Journal Bearings: Borneo Mechanical Engineering and Science, 1(1), 1–8.
Catania, M., Parolin, F., Fattori, F., & Colbertaldo, P. (2024). The role of hydropower in decarbonisation scenarios. Renewable Energy, 236, 121411. https://doi.org/10.1016/j.renene.2024.121411
Dias, B., Lopes, M., Fernandes, H., Marques, S., Gírio, F., & Belo, I. (2024). Biomass and microbial lipids production by Yarrowia lipolytica W29 from eucalyptus bark hydrolysate. Renewable Energy, 224, 120173. https://doi.org/10.1016/j.renene.2024.120173
Direktorat Jenderal Minyak Dan Gas Bumi (2008). Pertamina sesuaikan harga elpiji 12 Kg. https://migas.esdm.go.id/post/Pertamina-Sesuaikan-Harga-Elpiji-12-Kg
Galusnyak, S. C., Petrescu, L., Cosprundan, A. M., & Cormos, C. C. (2024). Biodiesel production using various methanol sources and catalytic routes: A techno-environmental analysis. Renewable Energy, 232, 121051. https://doi.org/10.1016/j.renene.2024.121051
G?ówka, M., Wójcik, J., Boberski, P., Bia?ecki, T., Gawron, B., Skolniak, M., & Suchocki, T. (2024). Sustainable aviation fuel – Comprehensive study on highly selective isomerization route towards HEFA based bioadditives. Renewable Energy, 220. https://doi.org/10.1016/j.renene.2023.119696
Hasan, F., Tarigan, B., & Anasril. (2022). Pengaruh banyaknya penambahan minyak goreng bekas ke minyak solar terhadap nilai panas bahan bakar yang dihasilkan. Buletin Utama Teknik, 17(2), 129–132.
Hossain, A. K., Sharma, V., Serrano, C., Krishnasamy, A., & Ganesh, D. (2024a). Production of biofuel from AD digestate waste and their combustion characteristics in a low-speed diesel engine. Renewable Energy, 222, 119884. https://doi.org/10.1016/j.renene.2023.119884
Hossain, M. S., Wasima, F., Shawon, M. S. I. K., Mourshed, M., & Das, B. K. (2024b). Valorization of food waste into hydrogen energy through supercritical water gasification: Generation potential and techno-econo-environmental feasibility assessment. Renewable Energy, 235, 121382. https://doi.org/10.1016/j.renene.2024.121382
Irsyad, M., Amrizal, Harmen, Amrul, Susila Es, M. D., & Diva Putra, A. R. (2023). Experimental study of the thermal properties of waste cooking oil applied as thermal energy storage. Results in Engineering, 18, 101080. https://doi.org/10.1016/j.rineng.2023.101080
Kumar, A., Pali, H. S., & Kumar, M. (2024). Evaluation of waste plastic and waste cooking oil as a potential alternative fuel in diesel engine. Next Energy, 5, 100181. https://doi.org/10.1016/j.nxener.2024.100181
Loutfi, A. A. (2024). Renewable energy stock prices forecast using environmental television newscasts investors’ sentiment. Renewable Energy, 230, 120873. https://doi.org/10.1016/j.renene.2024.120873
Lubis, R., Jufrizal, J., Supriatno, S., & Nurdiana, N. (2024). Analisis efisiensi thermal dan konsumsi bahan bakar pada burner kompor SNI sebagai dasar acuan perencanaan burner mesin stirling. IRA Jurnal Teknik Mesin dan Aplikasinya, 3(2), 1–7. https://doi.org/10.56862/irajtma.v3i2.96
Manske, D., Lehneis, R., & Thr, D. (2025). The landscape of the renewable electricity supply - Municipal contributions to Germany’s energy transition. Renewable Energy, 240. https://doi.org/10.1016/j.renene.2024.122172
Mensah, T. N. O., Oyewo, A. S., Bogdanov, D., Aghahosseini, A., & Breyer, C. (2024). Pathway for a fully renewable power sector of Africa by 2050: Emphasising on flexible generation from biomass. Renewable Energy, 234, 121198. https://doi.org/10.1016/j.renene.2024.121198
Nkosi, S., Unuofin, J. O., Odeniyi, O. A., Iwarere, S. A., & Daramola, M. O. (2024). Harnessing microbial potential: Exploiting heavy oil-laden soil microbiota for sustainable production of high-yield rhamnolipids from waste cooking oil. Biocatalysis and Agricultural Biotechnology, 61, 103371. https://doi.org/10.1016/j.bcab.2024.103371
Nulambeh, N. A., & Jaiyeoba, H. B. (2024). Could industrialization and renewable energy enhance environmental sustainability: An empirical analysis for Sub-Saharan Africa? World Development Sustainability, 5, 100191. https://doi.org/10.1016/j.wds.2024.100191
Nyarko, K., Urmee, T., Whale, J., Simsek, Y., & Haigh, Y. (2025). Assessing the effectiveness of energy policies in accelerating renewable energy-based mini-grid deployment: A case study. Energy for Sustainable Development, 85, 101631. https://doi.org/10.1016/j.esd.2024.101631
Prihartono, J., & Irhamsyah, R. (2022). Analisis konduktivitas termal pada material logam (tembaga, alumunium dan besi). Jurnal Teknik Mesin Presisi, 24(2), 49–54.
Sari, A. S. (2023, September 18). Produksi minyak jelantah Indonesia mencapai 1,2 juta kilo liter. Traction Energy Asia. https://tractionenergy.asia/id/produksi-minyak-jelantah-di-indonesia-mencapai-12-juta-kiloliter/
Sathish, T. (2024). Combustion and emission performance analyzes on the blend of waste cooking oil/Azadirachta indica oil biodiesel/carbon nano tubes in diesel engines. International Journal of Thermofluids, 24, 100964. https://doi.org/10.1016/j.ijft.2024.100964
Suwarno, D. U., Widyastuti, W., Sriwindono, H., Purwoto, L., & Harini, B. W. (2024). Kompor minyak jelantah: kinerja dan keberlanjutan dalam pemanasan air rumah tangga. Prosiding SENAPAS, 2(1), 73–78.
Tamrin. (2013). Gasifikasi minyak jelantah pada kompor bertekanan [Waste cooking oil gasification with pressure stoves]. Jurnal Teknik Pertanian Lampung, 2(2), 115–122.
Wang, Y., Shinwari, R., & Naeem, M. A. (2024). The effects of green technology and globalization on energy demand in emerging economies. Renewable Energy, 237, 121706. https://doi.org/10.1016/j.renene.2024.121706
Yang, X., Zhou, H., & Gao, J. (2025). Enhancing renewable energy productivity and energy efficiency of energy projects: How does cost of capital influence? Energy Strategy Reviews, 57, 101608. https://doi.org/10.1016/j.esr.2024.101608
Zhang, X., Feng, D., Wang, J., & Sui, A. (2024). Integrating renewable energy systems: Assessing financial innovation, renewable energy generation intensity, energy transition and environmental regulation with renewable energy sources. Energy Strategy Reviews, 56, 101567. https://doi.org/10.1016/j.esr.2024.101567
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Purwandito T. Asmoro

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.