Optimizing the Purging Interval of 1 kW PEM Fuel Cell Control System in Fuel Cell Vehicles

  • Kurniawan Kurniawan B2TKE-BPPT
  • Kontan Tarigan Magister Mechanical Engineering, Faculty of Engineering, Mercu Buana University., Jakarta
  • Andi Firdaus Sudarma Magister Mechanical Engineering, Faculty of Engineering, Mercu Buana University., Jakarta
  • Raden Dwi Pudjisusilo Magister Mechanical Engineering, Faculty of Engineering, Mercu Buana University., Jakarta
  • Deni Shidqi Khaerudini Magister Mechanical Engineering, Faculty of Engineering, Mercu Buana University., Jakarta https://orcid.org/0000-0001-7171-8966
Keywords: fuel cell, fcev, purging, matlab, simulink

Abstract

This study was conducted to explore and understand the duration of purging in fuel cell control systems and their application in fuel cell vehicles, a critical aspect that has a significant impact on the overall performance and efficiency of vehicles or devices that use fuel cell technology. The method adopted in this research involves modeling and simulation using a simulation platform, SIMULINK-MATLAB; modeling is carried out with a program and then validated with test data. This approach allows researchers to replicate and analyze system dynamics virtually to identify existing systems so that empirical models can be identified. Apart from that, the performance characteristics of the given parameters can be known by knowing the model and simulation before the physical implementation is carried out. From the study results, it was found that the modeling carried out with transfer function model 0.02635 s + 1.036/s + 0.04359 and validated with the test results 87.19% fit to estimation data was quite valid so that the model identification could be said to be suitable for this study.

Downloads

Download data is not yet available.

References

Bartolucci, L., Cennamo, E., Cordiner, S., Donnini, M., Grattarola, F., Mulone, V., & Pasqualini, F. (2023). Fuel cell hybrid electric vehicles: Fuel cell experimental characterization and modeling towards the development of a hardware-in-the-loop platform for advanced powertrain design. Journal of Physics: Conference Series, 2648(1), 012063. https://doi.org/10.1088/1742-6596/2648/1/012063

Bonnet, C., Raël, S., Hinaje, M., Guichard, S., Habermacher, T., Vernier, J., François, X., Péra, M.-C., Lapicque, F., Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France, Université de Lorraine, GREEN, F-54000 Nancy, France, H2SYS SAS, H2Sys, Campus of the Technology University of Belfort Montbéliard, 19 rue Becquerel, F-90000 Belfort, France, FCLAB, Univ. Bourgogne Franche-Comté, UTBM, CNRS, F-90000 Belfort, France, & FEMTO-ST Institute, FCLAB, Univ. Bourgogne Franche-Comté, CNRS, F-90000 Belfort, France. (2021). Direct fuel cell—Supercapacitor hybrid power source for personal suburban transport. AIMS Energy, 9(6), 1274–1298. https://doi.org/10.3934/energy.2021059

Fauziah, K., Kurniawan, Kurniasari, A., Astriani, Y., Samodra, B., Rostyono, D., & Eniya Listiani Dewi. (2023). Performance test of 1 kW PEM fuel cell system to determine its empirical model. Evergreen, 10(3), 1982–1990. https://doi.org/10.5109/7151761

Jian, Q., Luo, L., Huang, B., Zhao, J., Cao, S., & Huang, Z. (2018). Experimental study on the purge process of a proton exchange membrane fuel cell stack with a dead-end anode. Applied Thermal Engineering, 142, 203–214. https://doi.org/10.1016/j.applthermaleng.2018.07.001

Kurniawan, K., Abdul Hamid Budiman, Ferri Hermawan, & Anton Rahmawan. (2020). Design of control and human machine interface (HMI) for proton exchange membrane fuel cell. Indonesian Journal of Energy, 3(1), 12–18. https://doi.org/10.33116/ije.v3i1.46

Lu, Y., Wang, X., Yang, G., Gong, D., & Xu, S. (2024). Experimental study on the influence of operating conditions on performance decline with periodic anode purges in a vehicular PEMFC stack. International Journal of Hydrogen Energy, 69, 1276–1286. https://doi.org/10.1016/j.ijhydene.2024.05.159

Mancino, A. N., Menale, C., Vellucci, F., Pasquali, M., & Bubbico, R. (2023). PEM fuel cell applications in road transport. Energies, 16(17), 6129. https://doi.org/10.3390/en16176129

Manoharan, Y., Hosseini, S. E., Butler, B., Alzhahrani, H., Senior, B. T. F., Ashuri, T., & Krohn, J. (2019). Hydrogen fuel cell vehicles; Current status and future prospect. Applied Sciences, 9(11), 2296. https://doi.org/10.3390/app9112296

Muñoz, P. M., Correa, G., Gaudiano, M. E., & Fernández, D. (2017). Energy management control design for fuel cell hybrid electric vehicles using neural networks. International Journal of Hydrogen Energy, 42(48), 28932–28944. https://doi.org/10.1016/j.ijhydene.2017.09.169

Niu, T., Yu, X., Zhang, C., Wang, G., Han, M., Liu, H., Zhao, F., & Shuai, Q. (2024). Purge strategy analysis of proton exchange membrane fuel cells based on experiments and comprehensive evaluation method. Fuel, 363, 130970. https://doi.org/10.1016/j.fuel.2024.130970

Pedicini, R., Romagnoli, M., & Santangelo, P. E. (2023). A critical review of polymer electrolyte membrane fuel cell systems for automotive applications: Components, materials, and comparative assessment. Energies, 16(7), 3111. https://doi.org/10.3390/en16073111

Peksen, M. (2021). Hydrogen technology towards the solution of environment-friendly new energy vehicles. Energies, 14(16), 4892. https://doi.org/10.3390/en14164892

Raceanu, M., Bizon, N., & Varlam, M. (2022). Experimental results for an off-road vehicle powered by a modular fuel cell systems using an innovative startup sequence. Energies, 15(23), 8922. https://doi.org/10.3390/en15238922

Radica, G., Tolj, I., Markota, D., Lototskyy, M. V., Pasupathi, S., & Yartys, V. (2021). Control strategy of a fuel-cell power module for electric forklift. International Journal of Hydrogen Energy, 46(72), 35938–35948. https://doi.org/10.1016/j.ijhydene.2021.01.225

Rogers, T. J., Holmes, G. R., Cross, E. J., & Worden, K. (2017). On a grey box modelling framework for nonlinear system identification. In N. Dervilis (Ed.), Special topics in structural dynamics, Volume 6 (pp. 167–178). Springer International Publishing. https://doi.org/10.1007/978-3-319-53841-9_15

Szwajca, F., Berger, A., Spalletta, R., & Pielecha, I. (2022). Characteristics of fuel cells under static and dynamic conditions. Rail Vehicles/Pojazdy Szynowe, 3–4, 44–52. https://doi.org/10.53502/RAIL-157516

Wang, F., Xie, M., Yang, D., Ming, P., Li, B., & Zhang, C. (2024). Study on the process of idle startup and shutdown optimization of fuel cell system. International Journal of Hydrogen Energy, 67, 24–32. https://doi.org/10.1016/j.ijhydene.2024.03.348

Xu, L. (2023). Challenges and optimization of PEMFC system in vehicles. Journal of Physics: Conference Series, 2608(1), 012045. https://doi.org/10.1088/1742-6596/2608/1/012045

Published
2024-08-29
How to Cite
Kurniawan, K., Tarigan, K., Firdaus Sudarma, A., Dwi Pudjisusilo, R., & Shidqi Khaerudini, D. (2024). Optimizing the Purging Interval of 1 kW PEM Fuel Cell Control System in Fuel Cell Vehicles. Indonesian Journal of Energy, 7(2), 78–85. https://doi.org/10.33116/ije.v7i2.210