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Our study introduces an innovative method for enhancing urban energy 

management by integrating high-resolution nighttime satellite imagery from 

SDGSAT-1 with detailed ground-truth verification of street lighting in major cities 

across Central Java and the Special Region of Yogyakarta. Utilizing the Glimmer 

Imager for Urbanization (GIU) with 10-meter resolution, our research precisely 

identifies various urban streetlamp types and evaluates their impact on energy 

consumption. As urban expansion increases the demand for public street lighting, 

there is a pressing need for efficient energy management to support urban 

development and reduce environmental footprints. This study focuses on 

Semarang, Yogyakarta, and Solo, aiming to assess energy efficiency by examining 

the impact of different street lighting on energy usage across various road network 

types. We discover significant correlations, especially in the red spectral band by 

employing pan sharpening techniques to enhance image resolution and zonal 

statistics for in-depth analysis. These correlations suggest the potential of using 

SDGSAT-1 data to estimate energy consumed by street lighting where direct 

measurements are unavailable. The findings also reveal significant variations in 

energy consumption across different road types, attributed to varying traffic and 

lighting needs. By highlighting these disparities, we underscore the potential of 

transitioning to Light-Emitting Diode (LED) lighting, which can reduce energy 

consumption by up to 69%. Our research not only demonstrates the capabilities of 

satellite imagery in urban energy management but also offers practical insights for 

cities looking to improve lighting efficiency, reduce costs, and promote 

sustainability in urban planning. 
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1.  Introduction  

 

As urbanization continues to shape the world, an increasing portion of the population is concentrated in 

cities (Jain, 2021). This urban shift places significant strain on infrastructure, particularly in terms of 

energy demands for public lighting. Local governments bear the financial responsibility of providing 

adequate street lighting to ensure public safety and urban functionality. However, the rising energy 

costs present a challenge to sustainable urban development. Effective energy management is essential 
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for cities to optimize their lighting systems, reduce operational expenses, and minimize their 

environmental footprint (Guittet, 2012; Radulovic et al., 2011). 

 

Public street lighting plays a crucial role in ensuring vibrant and safe urban life during nighttime hours 

(van Bommel, 2015; Morrow et al., 2000). It enhances visibility and safety for motorists and 

pedestrians, allowing them to navigate roads and sidewalks with greater ease and confidence (Mohamed 

et al., 2018). This, in turn, reduces the risk of accidents and instils a sense of security among the 

populace. Furthermore, adequate street lighting fosters a thriving nighttime economy by illuminating 

commercial areas, encouraging pedestrian traffic, and extending business hours. This not only supports 

local businesses but also contributes to a more vibrant and dynamic urban atmosphere. Given the 

numerous benefits of public street lighting, it is increasingly important to strive for their energy 

efficiency in alignment with sustainability goals. 

 

A critical factor influencing energy consumption in street lighting is the intensity of illumination 

(Ergüzel, 2019; Khade et al., 2017; Wojnicki & Kotulski, 2018). By analyzing the intensity of light 

emitted from streets, city planners and utility managers can gain crucial insights into energy 

consumption patterns and identify areas for energy efficiency improvements. Streets with exceptionally 

high light intensity can be examined to determine the type of lighting fixtures in use. If conventional, 

energy-inefficient lamps are employed, these areas should be prioritized for Light-Emitting Diodes 

(LED) lamp retrofits. Transitioning to energy-efficient LED lighting can significantly reduce energy 

consumption and associated costs. 

 

Recognizing this, local governments have increasingly adopted LED lighting technology as a 

sustainable solution for public street lighting. LED lights offer a significant advantage by providing 

equivalent lighting intensity while consuming much less energy compared to conventional lamps 

(Srivatsa et al., 2013). This energy efficiency stems from their design, which converts electrical energy 

directly into light, minimizing energy loss in the form of heat. Additionally, LED lights boast 

exceptional durability, extending their lifespan and reducing the frequency of lamp replacements 

(Casamayor et al., 2015; Curran & Keeney, 2006; Masara, 2019). This combination of energy efficiency 

and longevity translates into substantial cost savings and environmental benefits for municipalities. 

 

Satellite imagery of nighttime lights offers a valuable tool for evaluating and optimizing street lighting 

infrastructure in urban areas (Arellano & Roca, 2020; de Meester & Storch, 2020). Several prior studies 

have explored the potential of satellite imagery to extract streetlight information and evaluate energy 

consumption patterns. Cheng et al. (2020) utilized JL1-3B Nighttime Light Data to estimate energy 

savings achievable through lamp replacements, demonstrating the promise of this approach. However, 

the commercial nature of JL1-3B data poses a barrier to widespread adoption. Recognizing this 

limitation, Yin et al. (2024) developed a method to identify streetlights from SDGSAT-1 imagery, 

leveraging the freely available nature of this data source. 

 

Our research aims to refine the methodology further and apply it to three Indonesian cities: Semarang, 

Yogyakarta, and Solo. The novelty of this research lies in introducing a groundbreaking framework that 

combines high-resolution nighttime satellite imagery from SDGSAT-1 with rigorous ground-truth 

verification of street lighting types across various road segments in Indonesian cities. The objectives of 

this study include calculating the streetlight wattage at the research sites. This data is subsequently 

utilized to simulate energy savings from the replacement of non-LED lamps. A comparison is then 

conducted across the three cities, taking into account road functions. As a contribution, this study 

endeavours to offer insightful findings and suggestions to local authorities, utility companies, and urban 

designers who aspire to enhance street lighting infrastructures, reduce energy usage, and foster 

sustainable urban growth. 

 

2.  Methods and Materials 

 

Figure 1 illustrates the research framework, encompassing data sources, processing steps, and the 

ultimate goal of supporting strategic decision-making in urban energy management. Initially, nighttime 
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satellite imagery is processed using pan-sharpening, a technique that fuses panchromatic with 

multispectral imagery data. This process results in high-resolution imagery with retained multispectral 

data (González-Audícana et al., 2006). The multispectral red, green, and blue (RGB) data is then 

filtered, with low-value data removed due to insufficient light intensity. There is no existing research 

that definitively determines the threshold value for excluding low-light data in street lighting studies. 

Astronomy-based research typically uses a threshold value of 6 or lower to classify low light, while 

nighttime photography research uses a threshold value of 8 light (Zhao et al., 2023). Consequently, this 

research adopts a cut-off value of 7 to classify low light in street lighting. 

 

The data in Table 1 was collected from several secondary sources and validated through field review 

results. SDGSAT-1 nighttime satellite imagery data, collected in raster form, was processed using 

programs such as ArcGIS or QGIS. Data on street light usage is essential. Public street lighting was 

chosen due to the significant noise in residential area lighting, which is sourced from various types of 

lights and is difficult to identify. Data about public street lighting must include the location point, the 

type of lamp used, the number of lights at each point, and the power required. Data completeness is a 

challenge in this research. Therefore, Semarang City was chosen because its data on public street 

lighting points is much more complete than that of other locations. The total number of public street 

lighting points in Semarang is 64,354 street lights. After filtering and removing incomplete data, 48,995 

street lighting points remained. The street lighting data in Semarang City serves as a reference for the 

next stage.  

 

 
Figure 1. Research frameworks. 

The road lighting data is processed from tabular format to shapefile format, a suitable format for 

Geographic Information System (GIS) management, represented as point locations. Verification of 

street lighting types across various roads is conducted using random sampling methods. Each point 

location is buffered within a 5-meter radius and processed using zonal statistics to determine the RGB 

values at those points. Correlation is established by comparing the RGB values at specific points with 

the lamp type, average power usage, and total power usage per point. 

 

Data from Semarang City's public street lightings indicates a variety of lamp types. Correlating the 

energy usage of all lamp types with nighttime satellite imagery using the Pearson method yielded a 

maximum correlation of 40%. This relatively low correlation is insufficient for accurately simulating 

energy usage. The low correlation results from the wide range of energy usage within a single lamp 

type, which can vary from 15 watts to 1000 watts. To address this, the research focuses on the type of 

lamp and uses the average energy usage per type and the total average energy usage at each point 

location (Ozadowicz & Grela, 2014). 

 

The strong correlation value in one of the multispectral image bands supports the hypothesis that 

SDGSAT-1 satellite data can accurately simulate power usage at specific locations. Further simulations 

are conducted to compare power consumption in unknown locations, as well as to observe varying 
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energy usage across different types of roads or cities. To perform these simulations, the filtered 

nighttime satellite image data is processed using zonal statistical methods to determine specific RGB 

values at those locations. 

 

Table 1. Research dataset. 

No. Data Type Data Sources Data acquisition 

1 Administrative 

Boundary 

Indonesian Base map (Ina-

Geoportal) (Indonesian Geospatial 

Information Agency) 

March 2024 

2 Road Lighting 

• Lamp Type,  

• Energy usage,  

• Number of Lamps,  

• Coordinates  

https://sigpju.semarangkota.go.id/ March 2024 

3 SDGSAT-1 nighttime 

satellite imagery  

• Panchromatic 

imagery 

• multispectral 

imagery 

https://data.SDGSAT-

1.ac.cn/dataQuery 

March 2024 

4 Road Data Open Street Map Downloader Plugin 

in QGIS 

March 2024 

 

3.  Results and Discussions 

 

3.1 Nighttime Satellite Data Processing 

 

SDGSAT-1 is a newly developed satellite launched in 2021 by the International Research Center of Big 

Data for Sustainable Development Goals (CBAS). The innovative design of RGB bands was applied to 

the Glimmer Imager, resulting in a spatial resolution of 10 meters for the panchromatic band and 40 

meters for the RGB bands (Li et al., 2024). Figure 2 shows the pan-sharpening process of a 40-meter 

resolution multispectral night image of Semarang with a 10-meter resolution panchromatic image, 

resulting in a 10-meter resolution image that retains the multispectral information. For further analysis, 

multispectral data with values below seven were deleted because they were deemed to have no light or 

too low intensity. 

 

3.2 Road Lighting Data Processing 

 

Figure 3 shows a detailed map of street lighting lamp types in Semarang. The public street lighting data 

indicates a variety of lamp types, including floodlights, mercury lamps, sodium lamps, light-emitting 

diodes (LED), solar-powered lamps, and fluorescent lamps. The distribution of lamp types is as follows: 

Straight Line Fluorescent Lamps (SL) make up 46.49% of the filtered data, High-Pressure Sodium 

Tubular Lamps (HPST) account for 23.52%, and LED lamps constitute 9.89%, among others.  

 

Table 2 presents the average power and total average power for each type of lamp. The total average 

power is calculated because a single street lighting pole may have more than one lamp. The data shows 

that the FLOOD type lamp has the highest average power, while the TL type has the lowest. Similarly, 

the total average power is highest for FLOOD lamps at 5,000 watts and lowest for TL lamps at 28 watts. 

Floodlights have a high power value because they are typically used for illuminating large areas such 

as parks, sports fields, or buildings, providing bright and even light. In contrast, TL lamps use gas and 

phosphor coatings to produce light and are more common in commercial, industrial, and household 

lighting. 
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Figure 2. Pan-sharpening process on night satellite image of Semarang City. 

 
Figure 3. Street lighting lamp type in Semarang City. 

Figure 4 provides an intriguing observation on the variation of power across different types of lamps. 

It highlights a significant range, with the highest recorded power peaking at 1000 watts, while the lowest 

dips below 30 watts. The breakdown by lamp type reveals that FLOOD lamps dominate in terms of 

power output, achieving the highest wattage. This is followed by HPIT and HIPST types, with TL lamps 

recording the lowest wattage among them. Such a distribution suggests distinct functional or design 

differences among these lamp types, influencing their power consumption and output levels. 

Additionally, the total power data for FLOOD lamps exhibit a noticeable jump, indicating that the 

typical installation of FLOOD lamps at a single location includes about five lamps. This contrasts with 

other lamp types, which generally have just one lamp per location on average. This difference 

significantly impacts the total average power values, with the total for FLOOD lamps being much 

higher. Such a setup for FLOOD lamps suggests they are used in locations requiring higher illumination, 
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thus accounting for the higher total average power compared to other types, where the power figures 

are more consistent with individual lamp output. 

 

Table 2. Streetlight type and average power usage data. 

Lamp 

Type  
Description 

Average 

power (watt) 

Total average power 

(Average power * average 

number) 

FLOOD Floodlight 1,000 5,000 

HPIT High-Pressure Mercury Vapor Lamp 155 180 

HPL High-Pressure Sodium Lamp 113 113 

HPST High-Pressure Sodium Tubular Lamp 147 169 

LED Light Emitting Diode 97 120 

SL Straight Line (Fluorescent) 41 41 

SOLAR Solar-Powered Lamp 80 80 

SON-T Sodium Lamp - Tubular 40 40 

TL Tubular Lamp (Fluorescent) 28 28 

 

 

 

 
Figure 4. Average power and total average power of lamp type. 

 

3.3 The Correlation of Road Lighting Lamp Types and Nighttime Satellite 

 

To establish a correlation between road lighting and nighttime satellite RGB data, point-shaped street 

lighting data is initially processed using a buffering technique that expands each point into a 5-meter 

radius, transforming it into area-shaped data. This method broadens the scope of analysis by creating a 

larger spatial footprint for each light point, enabling more accurate comparisons with satellite imagery 

data. This expanded area data allows for a more comprehensive interaction between the localized 

lighting data and the broader spectral data captured by satellites at night. 

 

Following the buffering process, zonal statistics are employed to calculate the average RGB values of 

nighttime lighting within these newly defined areas. This statistical method aggregates the RGB values 

within each buffered zone to produce a representative average for that specific area, facilitating detailed 

analysis of light intensity and color characteristics across different zones. The results of these zonal 

statistics are compiled into Table 3, providing a structured and accessible format to analyze and interpret 

the relationship between street lighting configurations and the corresponding satellite-detected RGB 

night light data. 
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In the analysis of average band values for Red (gray), Green, and Blue, a clear pattern emerges in 

relation to different types of street lighting lamps. The FLOOD lamp type consistently shows the highest 

average values across all three color bands—Red (gray), Green, and Blue. This suggests that FLOOD 

lamps emit a stronger light across the entire visible spectrum, indicative of their broader and more 

intense illumination capabilities, often employed in areas requiring significant lighting. 

 

On the other hand, the SL type exhibits the lowest average values in the red and green bands, 

highlighting its relatively weaker light output in these color spectra. Interestingly, the blue band also 

identifies SL-type lamps as one of the lowest, alongside another unspecified type, demonstrating a 

consistent trend of lower intensity across these spectral bands. This pattern may reflect the specific 

usage and design of SL-type lamps, which are typically optimized for more subdued and energy-

efficient urban street lighting. 

 

Table 3. The average red (gray), green, blue band data based on lamp type. 

Lamp Type Average of Red (gray) Average of Green Average of Blue 

FLOOD 55 47 17 

HPIT 18 19 5 

HPL 6 9 3 

HPST 16 18 5 

LED 15 19 6 

SL 4 6 2 

SOLAR 17 13 3 

SON-T 22 32 15 

TL 5 8 2 

 

The average red band intensity depicted in Figure 5 shows significant differences among various types 

of lamps. The data indicates noticeable variations in the average intensities of the green and blue bands 

among different lamp types as well. Specifically, the FLOOD lamp type has the highest average red 

band intensity, while the SL lamp type has the lowest. These differences may reflect the characteristics 

of each lamp type. Therefore, understanding the disparities in light intensities and the correlation of 

different bands with lamp types is essential. 

 
Figure 5. Average power and total average power of lamp type. 
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Figure 6 is the correlation matrix between the energy usage of each lamp type and nighttime satellite 

RGB data. The data shows that the red band has the highest correlation values, with a correlation value 

of 0.92 for both average power (watt) and total average power (watt). The green band ranks second, 

with correlation values of 0.80 for average power (watt) and 0.81 for total average power (watt). The 

blue band has the lowest correlation values, at 0.66 for average power (watt) and 0.68 for total average 

power (watt). All RGB bands in the nighttime satellite imagery data exhibit a high positive correlation 

with the average power usage of each lamp type, with the red band showing the highest correlation 

values. 

 

 
Figure 6. Correlation matrix of energy usage for different lamp types and nighttime satellite RGB. 

Table 4 describes the correlation between total average power and variables such as average power and 

average red, green, and blue bands on SDGSAT-1 nighttime multispectral data. The red band has the 

highest correlation value of 0.92, with a p-value of only 0.00018, indicating highly significant 

correlation results between the two variables. Several studies have explained how RGB values can be 

used to determine the type of lighting or the level of luminosity (Elvidge et al., 2010; Yin et al., 2024). 

Additionally, some studies have discussed the relationship between luminosity levels and energy usage 

(Itasari et al., 2023; Kostic & Djokic, 2009). However, no research has directly linked RGB values with 

energy levels. The high correlation of the red band in night satellite imagery with energy usage levels, 

both average power usage and total average power usage, supports the hypothesis that SDGSAT-1 

satellite night satellite imagery can illustrate energy usage. Red band correlation values reaching 0.92 

indicate that the red band can be used as a proxy to calculate power usage in unknown locations. This 

result enables us to extrapolate energy usage in locations lacking data, compare energy usage among 

specific street classes, or juxtapose energy usage between cities. 
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Table 4. Correlations and P-value of total average power to other variables. 

Variables Pearson Correlations P-Value 

Average of Power (watt) 0.9931 9.4059e-09 

Average of Red 0.9175 0.00018 

Average of Green 0.8056 0.00491 

Average of Blue 0.6773 0.03142 

 

3.4 The Correlation of Road Types and Energy Usages 

 

After identifying that the red band has the highest correlation with total average power and average 

power, the red band data could be used as a proxy to estimate the total average power in locations 

lacking data. However, our research is based on data points within a 5-meter radius, which may not be 

accurate enough for application in other locations due to the lack of known street lighting points to take 

the 5-meter radius area. To address this issue, a broader sampling area is required. Consequently, the 

road network was selected according to its classification as a larger sample area.  

 

The road data is derived from OpenStreetMap, an open-source data. The road network is classified into 

primary, secondary, and tertiary roads based on their importance in urban areas. Each type of road 

includes connecting roads, typically represented by the word "link" in the classification. Detailed road 

types in Semarang City are presented in Figure 7. 

 

 
Figure 7. Road types in Semarang City. 

Roads with different classifications should exhibit different energy usage patterns (Vidyarthi et al., 

2023). More important roads, with higher hierarchy and frequent traffic, generally have better lighting 

compared to quieter roads, leading to higher energy consumption. Thus, the road class influences the 

amount of energy used for street lighting. By analyzing the complete street lighting data in Semarang 

City, energy usage for each classification was calculated and illustrated in Figure 8. 

 

Figure 9 shows the average power consumption for each road type, revealing varied values. The highest 

power consumption is observed in the tertiary link road type. Tertiary links, or slip roads/ramps, connect 

tertiary roads to each other. These roads require higher illumination due to their quieter nature, 

necessitating increased lighting at intersections to enhance driving safety. Conversely, the residential 

road type has the lowest consumption, attributed to lower population density, slower vehicle speeds, 

and considerations for cost and energy efficiency. 
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Figure 8. Light intensity in different road types in Semarang City. 

 

 
Figure 9. Average power consumption for each road type. 

The road data correlation matrix in Figure 10 shows varied values, but the differences among bands are 

not substantial. The red band has a correlation value of 0.86 with average power (watts) and 0.79 with 

total average power (watts). The green band has a correlation of 0.87 with average power (watts) and 

0.85 with total average power (watts). The blue band shows a correlation of 0.81 with average power 

(watts) and 0.80 with total average power (watts). While the correlation values between the red, green, 

and blue bands vary, they are not significantly different. Nonetheless, all bands exhibit a strong 

relationship with average power and total power. Based on the results, although the accuracy is lower 

than the 5-meter radius at the street lighting location point, the road network class can still be used to 

estimate energy usage levels. 

 

3.5 Potential Energy Saving 

 

The data analysis of Semarang's lighting infrastructure reveals a significant potential for energy savings 

through the adoption of LED lamps. The current utilization of fluorescent and sodium lamps, which are 

prevalent across the city, offers an opportunity for energy efficiency improvements. Replacing these 

traditional lighting options with LED lights could result in a substantial reduction in energy 

consumption—up to 69% compared to existing conditions (Kurniawan & Kurniawan, 2022). This 

transition not only supports environmental sustainability but also reduces the economic burden 

associated with high energy costs. 
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Figure 10. Correlation matrix of energy usage on different road class and nighttime satellite RGB. 

If switching to LED lighting can reduce 50% of energy consumption in the street lighting in Semarang 

City, the impact on the energy profile would be significant. As shown in Figure 11, this reduction would 

markedly decrease the average power consumption. This scenario underscores the practical benefits of 

upgrading to LED technology, highlighting both immediate energy savings and long-term advantages 

in terms of sustainability and cost-effectiveness. The proportion of LED lights in Semarang accounts 

for only 9.89% of the total data used in the study. Thus, achieving a 50% power saving should be 

relatively easy. Tertiary links have the highest potential for electricity savings, with an average power 

usage reduction of 800 watts. Residential roads have a lower power-saving potential due to factors such 

as high traffic volume, mixed-use areas, irregular activities, and possibly poor road conditions, making 

them less efficient in terms of energy use compared to other road types. 

 

 
Figure 11. Potential electricity saving for each road type. 
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3.6 Modelling Energy Usage in Different Cities  

 

Energy usage modelling was conducted in two different cities, Yogyakarta and Solo. Data from Solo, 

Yogyakarta, and Semarang were compared to analyze energy management across the three cities. Street 

data from Yogyakarta and Solo, obtained using OpenStreetMap data, is illustrated in Figures 12a and 

12b. SDGSAT-1 nighttime multispectral data was collected at locations in Solo and Yogyakarta and 

processed using the Pan sharpening method. The results of Pan sharpening RGB data in Solo and 

Yogyakarta are illustrated in Figures 13a and 13b. 

 
Figure 12. Road network (a) Solo and (b) Yogyakarta. 

 
 

Figure 13. Night satellite image light results in (a) Solo and (b) Yogyakarta. 

The road network, represented as line data, is subjected to a buffering process with a radius of 5 meters. 

This technique extends the area of analysis around the existing roads, enabling more accurate 

assessments of the road network's impact on its surroundings. The resulting buffered road area data is 

then utilized for more detailed area representation. Thereafter, the road area data is statistically zoned 

to determine the average value from the SDGSAT-1 nighttime multispectral data. This statistical 

analysis is vital to identify variations in light intensity recorded in the data, which may indicate different 

characteristics of the area, such as population density or economic activity levels. In the final stages, 

the red band from the SDGSAT-1 data serves as the primary reference in calculating the average light 

power for each road network class. The light intensity based on the red band values is then visually 

presented for Solo and Yogyakarta, as seen in Figures 14a and 14b, respectively. This visualization not 

only clarifies the light distribution in both cities but also facilitates the comparison of various road 

network classes in terms of nighttime light intensity. 

 

Table 5 shows a comparison of the average zonal statistics for each type of road in each city. In 

Semarang City, the highest power (watts) is observed in the red band for the secondary link road type, 
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with street lightings on these roads averaging 41.40 watts. This is influenced by the characteristics of 

the roads in Semarang City. In Yogyakarta City, the highest red band value is found in the primary link 

road type, with an average of 58.22 watts. This value is influenced by the fact that Yogyakarta City has 

more primary link roads than Semarang and Solo. In Solo City, the highest red band value is on 

secondary link roads, with an average of 35.69 watts. This is due to urban growth, the diversion of 

traffic from main roads, and increased accessibility to various city areas aimed at improving mobility 

and better accommodating the transportation needs of residents. 

 

 
Figure 14. Light intensity in different road types in (a) Solo and (b) Yogyakarta. 

Table 5 shows different road lighting configurations. In the three cities, it was found that link roads, on 

average, have better street lighting than their equivalent road networks. This configuration is shared 

among different cities to increase road safety at intersections. This pattern is found in all road types in 

all cities except for trunk-level roads in Solo City, which do not have significant trunk roads. Trunk 

roads are one of the most important roads in a city's system that are not freeways/tolls and have a higher 

hierarchy than primary roads. 

 

Yogyakarta City has brighter street lightings in locations with higher road classifications. This is also 

true for Solo, except at the trunk road level, which is rare in Solo. However, Semarang City has a 

different configuration, with the highest light intensity appearing on the link type of tertiary road. It is 

suspected that this arrangement ensures quieter road types have better security through better lighting. 

We believe that lighting level does not need to be raised to the level of trunk or primary roads. Improving 

energy efficiency in Semarang City could lower the lighting level in these locations to the lighting level 

on secondary roads but keep it brighter than comparable road types. The lighting level on tertiary roads 

tends to be closer to residential areas, so lowering the very high lighting level to a reasonably bright 

level can improve the comfort of residents. 
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Table 5. Average red band value in different street type. 

Road Type Semarang City Yogyakarta City Solo City 

Trunk 38,99 45,93 14,11 

Trunk_Link 33,57 18,30 12,25 

Primary 39,22 43,69 30,82 

Primary_Link 38,66 58,22 30,27 

Secondary 26,73 17,97 27,89 

Secondary_Link 41,40 23,78 35,69 

Tertiary 20,20 15,06 15,93 

Tertiary_Link 40,40 18,43 17,23 

Residential 4,99 4,51 4,66 

 

4.  Conclusions 

 

We hypothesize that SDGSAT-1 satellite data, particularly the nighttime light multispectral data, can 

illustrate energy usage at specific locations. To substantiate this hypothesis, quantitative methods were 

employed to determine the high correlation between SDGSAT-1 RGB multispectral data, lamp types, 

and average energy usage. We then estimate energy usage in locations lacking direct data, compare 

energy usage among different street classes, and contrast energy usage between cities. Integrating 

satellite imagery with empirical field data not only provides new dimensions of understanding in urban 

energy management but also establishes a scalable and adaptable framework for enhancing street 

lighting infrastructure across various municipalities. Ultimately, the research findings can support 

strategic decision-making in planning and implementing more efficient and sustainable urban energy 

solutions. 

 

We thoroughly analyze the correlation between nighttime satellite imagery and urban lighting, utilizing 

SDGSAT-1's multispectral capabilities to link energy usage with specific types of street lamps in 

Semarang. We integrate pan-sharpened images that enhance spatial resolution to 10 meters while 

preserving multispectral data, facilitating detailed urban lighting analysis. Various lamp types, such as 

floodlights, mercury, sodium, LED, solar-powered, and fluorescent lamps, are evaluated for their power 

usage and light emission characteristics. It was found that the FLOOD lamp type, generally used for 

illuminating extensive areas, exhibited the highest average and total power consumption, confirming its 

high energy intensity. A significant discovery of this study is the robust correlation between the red 

spectral band of the satellite images and the power usage of different lamp types, with a correlation 

coefficient of 0.92. This high correlation suggests the feasibility of using red band data as a proxy for 

estimating unknown power consumption across various urban settings. Further, we explore the impact 

of road classification on energy consumption in street lighting, demonstrating that higher-traffic roads 

typically consume more energy due to enhanced lighting requirements. This pattern is evident across 

different cities, including Yogyakarta and Solo, with variations in road lighting configurations reflecting 

urban planning and road hierarchy. We also point towards potential energy savings, highlighting the 

significant reduction in energy consumption achievable by replacing less efficient lamps with LEDs, 

resulting in up to a 69% energy saving (Kurniawan & Kurniawan, 2022).  

 

Relying on open-source data highlights the need for more comprehensive ground truth data to refine 

satellite image calibration and verification. Increasing the dataset's granularity would improve the 

accuracy of light intensity identification and energy usage estimations, ensuring the analysis more 

accurately reflects actual conditions. Future research should integrate advanced artificial intelligence 

and machine learning technologies to analyze large datasets more efficiently, uncovering patterns not 

readily visible through manual methods. This could enhance the precision of energy usage estimation 

and aid in better urban planning and environmental monitoring. 
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Additionally, exploring the actual impact of lamp-type replacements, such as switching to LED lighting, 

could provide insights into the cost-benefit ratios of such initiatives on a larger scale. Collaborative 

multidisciplinary approaches involving engineering, urban planning, and environmental science are 

recommended to tackle the complexities of urban lighting and energy consumption comprehensively. 

Such collaborations could lead to more innovative and sustainable solutions, improving urban 

environments globally. Overall, while our research marks a significant step forward, its conclusions 

underscore the need for more detailed studies across varied urban landscapes. This would not only 

confirm the reliability of using satellite imagery for urban energy assessments but also enhance global 

urban lighting strategies, promoting sustainability and safety in city planning. 
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Appendix 

 

Appendix A 

 

Data Sample 

Types Description Sample Location % 

FLOOD Floodlight                      4  0,01% 

HPIT High-Pressure Mercury Vapor Lamp                2.439  4,98% 

HPL High-Pressure Sodium Lamp                7.183  14,66% 

HPST High-Pressure Sodium Tubular Lamp              11.525  23,52% 

LED Light Emitting Diode                4.844  9,89% 

SL Straight Line (Fluorescent)              22.780  46,49% 

SOLAR Solar-Powered Lamp                     15  0,03% 

SON-T Sodium Lamp - Tubular                      8  0,02% 

TL Tubular Lamp (Fluorescent)                   197  0,40% 

 Total 48.995  100,00% 

 

Data Sample by Road Types 

highway Lamp Types 
Count of 

Types 

Average 

Power 

Average 

Lamp in 

single point 

Total 

Average 

Power 

trunk FLOOD           4,00   1.000,00         5,00   5.000,00  

 HPIT         84,00      249,64         1,32      329,89  

 HPL         18,00      234,44         1,00      234,44  

 HPST    1.101,00      244,81         1,25      307,07  

 LED       508,00      184,08         1,42      260,55  

 SL           7,00        44,29         1,00        44,29  

trunk Total    1.722,00      227,96         1,31      298,66  

trunk_link HPIT           4,00      147,50         2,25      331,88  

 HPL           3,00      208,33         1,00      208,33  

 HPST         43,00      250,58         1,21      303,03  

 LED         27,00      171,48         1,11      190,53  

trunk_link Total         77,00      215,84         1,22      263,50  

primary HPIT         68,00      197,35         1,57      310,54  

 HPST       688,00      224,81         1,19      266,96  

 LED       299,00      191,89         1,47      282,38  

 SL           2,00        40,00         1,00        40,00  

 SOLAR         12,00        80,00         1,00        80,00  

primary Total    1.069,00      211,88         1,29      273,13  

primary_link 

HPIT           4,00      175,00         1,00      175,00  

HPST         10,00      320,00         2,00      640,00  

LED           2,00      200,00         2,50      500,00  

primary_link Total         16,00      268,75         1,81      487,11  

secondary HPIT       361,00      194,46         1,23      238,63  

 HPL           8,00      111,25         1,00      111,25  

 HPST       906,00      178,78         1,10      197,53  

 LED       354,00      181,36         1,31      236,68  

 SL         11,00        60,00         1,00        60,00  

secondary Total    1.640,00      181,66         1,17      213,23  

secondary_link HPIT           3,00      208,33         1,00      208,33  

 HPST           3,00      216,67         1,33      288,89  

 LED           1,00        80,00         1,00        80,00  
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highway Lamp Types 
Count of 

Types 

Average 

Power 

Average 

Lamp in 

single point 

Total 

Average 

Power 

secondary_link Total           7,00      193,57         1,14      221,22  

tertiary HPIT       836,00      160,46         1,10      176,20  

 HPL         96,00      100,94         1,00      100,94  

 HPST    2.635,00      145,00         1,02      148,47  

 LED       943,00      119,01         1,15      137,06  

 SL       186,00        41,18         1,00        41,18  

 TL           1,00        15,00         2,00        30,00  

tertiary Total    4.697,00      137,50         1,06      145,96  

tertiary_link HPST           6,00      406,67         3,00   1.220,00  

 LED           1,00      120,00         2,00      240,00  

tertiary_link Total           7,00      365,71         2,86   1.044,90  

residential 

HPIT    1.079,00      131,66         1,03      136,05  

HPL    7.058,00      112,97         1,00      113,30  

HPST    6.133,00      118,87         1,02      121,31  

LED    2.709,00        54,88         1,01        55,61  

SL  22.574,00        40,84         1,00        40,97  

SOLAR           3,00        80,00         1,00        80,00  

SON-T           8,00        40,00         1,00        40,00  

TL       196,00        28,21         1,00        28,21  

residential Total  39.760,00        69,04         1,01        69,55  

 

Appendix B 

 

# -*- coding: utf-8 -*- 

"""PJU dan SDGSAT-1.ipynb 

 

**DATA LAMPU** 

""" 

 

import pandas as pd 

 

# Load the Excel file to see the sheet names and preview the data 

file_path = '/content/Data per lampu.xlsx' 

excel_data = pd.ExcelFile(file_path) 

 

# Show sheet names and preview the first sheet 

sheet_names = excel_data.sheet_names 

first_sheet_preview = pd.read_excel(excel_data, sheet_name=sheet_names[0], nrows=5) 

 

sheet_names, first_sheet_preview 

 

# Load the full data 

lamp_data = pd.read_excel(excel_data, sheet_name=sheet_names[0]) 

 

# Calculate basic statistics for each relevant column 

basic_stats = lamp_data.describe() 

basic_stats 

 

import matplotlib.pyplot as plt 

import seaborn as sns 
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# Setting the aesthetic style of the plots 

sns.set(style="whitegrid") 

 

# Creating subplots 

fig, axes = plt.subplots(2, 2, figsize=(14, 12)) 

 

# Plotting Average Power 

sns.barplot(ax=axes[0, 0], x='Lamp Type', y='Average of Power (watt)', data=lamp_data) 

axes[0, 0].set_title('Average Power (Watt) by Lamp Type') 

axes[0, 0].set_xticklabels(axes[0, 0].get_xticklabels(), rotation=45) 

axes[0, 0].set_ylabel('Average Power (Watt)') 

 

# Plotting Total Power 

sns.barplot(ax=axes[0, 1], x='Lamp Type', y='Average of Total Power  (watt)', data=lamp_data) 

axes[0, 1].set_title('Average Total Power (Watt) by Lamp Type') 

axes[0, 1].set_xticklabels(axes[0, 1].get_xticklabels(), rotation=45) 

axes[0, 1].set_ylabel('Average Total Power (Watt)') 

 

# Plotting Red Intensity 

sns.barplot(ax=axes[1, 0], x='Lamp Type', y='Average of Red (gray)', data=lamp_data) 

axes[1, 0].set_title('Average Red Intensity by Lamp Type') 

axes[1, 0].set_xticklabels(axes[1, 0].get_xticklabels(), rotation=45) 

axes[1, 0].set_ylabel('Average Red (gray)') 

 

# Plotting Green and Blue Intensity 

sns.barplot(ax=axes[1, 1], x='Lamp Type', y='Average of Green', data=lamp_data, color='green', 

label='Green') 

sns.barplot(ax=axes[1, 1], x='Lamp Type', y='Average of Blue', data=lamp_data, color='blue', 

label='Blue') 

axes[1, 1].set_title('Average Green and Blue Intensity by Lamp Type') 

axes[1, 1].set_xticklabels(axes[1, 1].get_xticklabels(), rotation=45) 

axes[1, 1].set_ylabel('Average Intensity') 

axes[1, 1].legend() 

 

plt.tight_layout() 

plt.show() 

 

import numpy as np  # Make sure to import numpy 

 

# Calculate the correlation matrix excluding non-numeric columns 

numeric_data = lamp_data.select_dtypes(include=[np.number])  # This ensures only numeric columns 

are included 

correlation_matrix = numeric_data.corr() 

 

# Plotting the correlation matrix 

plt.figure(figsize=(10, 8)) 

sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f", linewidths=.5) 

plt.title('Correlation Matrix of Lamp Data') 

plt.show() 

 

from scipy.stats import pearsonr  # Importing the pearsonr function 

 

# Extracting correlations and p-values between 'Average of Total Power  (watt)' and other variables 

total_power_correlations = {} 

variables = ['Average of Power (watt)', 'Average of Red (gray)', 'Average of Green', 'Average of Blue'] 
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for var in variables: 

    corr, p_value = pearsonr(lamp_data['Average of Total Power  (watt)'], lamp_data[var]) 

    total_power_correlations[var] = {'Correlation': corr, 'P-value': p_value} 

 

total_power_correlations 

 

"""**DATA JALAN**""" 

 

import pandas as pd 

 

# Memuat data 

data = pd.read_excel('/content/Data per jalan.xlsx') 

 

# Mencetak nama-nama kolom untuk memeriksa adanya spasi atau typo 

print(data.columns) 

 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

# Memuat data 

data = pd.read_excel('/content/Data per jalan.xlsx') 

 

# Mengonversi data dictionary ke DataFrame 

road_data = pd.DataFrame(data) 

 

# Menghitung statistik deskriptif 

statistik_deskriptif = road_data.describe() 

 

# Membuat visualisasi 

plt.figure(figsize=(12, 6)) 

sns.barplot(x='Road Type', y='Average of Total  (watt)', data=road_data) 

plt.title('Rata-rata Konsumsi Daya per Jenis Jalan') 

plt.ylabel('Rata-rata Daya (Watt)') 

plt.xlabel('Jenis Jalan') 

plt.xticks(rotation=45) 

plt.show() 

 

# Korelasi - Hanya kolom numerik 

numeric_data = road_data.select_dtypes(include=[np.number]) 

korelasi = numeric_data.corr() 

 

# Plotting matriks korelasi 

sns.heatmap(korelasi, annot=True, cmap='coolwarm', fmt=".2f") 

plt.title('Matriks Korelasi Data Jalan') 

plt.show() 

 

# Analisis penghematan 

# Asumsi: Lampu LED menggunakan 50% daya dari jenis lampu konvensional 

road_data['Savings Potential (Watt)'] = road_data['Average of Total  (watt)'] * 0.5 

total_savings = road_data['Savings Potential (Watt)'].sum() 

 

print("Total Potensi Penghematan Daya (Watt):", total_savings) 
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# Visualisasi potensi penghematan 

plt.figure(figsize=(12, 6)) 

sns.barplot(x='Road Type', y='Savings Potential (Watt)', data=road_data) 

plt.title('Potensi Penghematan Daya per Jenis Jalan') 

plt.ylabel('Potensi Penghematan Daya (Watt)') 

plt.xlabel('Jenis Jalan') 

plt.xticks(rotation=45) 

plt.show() 

 


