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Windows are a critical factor in enhancing energy efficiency in buildings, 

especially in tropical climates, where they are exposed to high-intensity sunlight. 

The incorporation of transparent photovoltaics using various PV technologies 

offers the opportunity for windows to harness solar energy for building purposes. 

The energy-saving benefits of using transparent photovoltaics have been 

extensively analyzed in various countries, but there is still a lack of comparative 

studies focusing on tropical countries. Our study aims to fill this gap by assessing 

the potential of transparent photovoltaics in enhancing energy efficiency in 

buildings located in Jakarta, Singapore, Kuala Lumpur, Rio de Janeiro, and Kotoka. 

We developed an energy consumption model located in a tropical climate, utilizing 

the EnergyPlus software. The simulation results clearly indicate that integrating 

photovoltaics into the building is particularly advantageous due to consistent solar 

radiation and the need for cooling and ventilation, resulting in a substantial up to 

59.3% reduction in total energy consumption. As a contribution, our research 

underscores the potential of transparent photovoltaics to revolutionize building 

energy efficiency in tropical climates, providing significant energy savings and 

promoting sustainable building practices. Addressing climate challenges, such as 

temperature and humidity management, necessitates the utilization of advanced 

materials and design strategies. Additionally, policy challenges encompass the 

requirement for favorable policies, incentives, and well-defined guidelines for the 

installation of PV windows. 
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1.  Introduction  

 

In recent years, there has been a notable surge in both research endeavors and practical implementations 

concerning building integrated photovoltaics (BIPV). BIPV entails the integration of photovoltaic 

materials into distinct components of building envelopes, such as roofs and facades, as a substitute for 

conventional building materials (Jelle et al., 2012; Yu et al., 2021). The core principle of BIPV revolves 

around harnessing the potential of photovoltaic power generation technology, capable of transforming 

solar energy into electrical energy, with the overarching objective of meeting the energy demands of 

buildings (Do et al., 2017; Jelle et al., 2012; Martín-Chivelet et al., 2022). 
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The installation of BIPV encompasses a range of substantial impacts and benefits, one of which is the 

provision of energy efficiency within the building. These effects stem from the performance-related 

prerequisites for BIPV modules and systems, which influence the energy consumption of the building. 

These prerequisites encompass the electrical performance of BIPV, the level of thermal insulation, the 

solar heat gain coefficient, and the optical properties (Martín-Chivelet et al., 2022). 

 

An intriguing application of BIPV is their integration into windows. Unlike the conventional installation 

of PV panels on rooftops, the utilization of BIPV on façades necessitates careful consideration of the 

façade's orientation (Arnaout et al., 2020; Brito et al., 2017; Mangkuto et al., 2023). This is due to the 

varying solar radiation and daylight availability experienced by different orientations. Moreover, the 

PV panels used in BIPV applications on façades need to maintain a certain level of transparency and 

transmittance to allow sufficient daylight to enter the building for illumination purposes. Therefore, 

unlike traditional PV technology, which primarily focuses on maximizing light absorption for power 

conversion efficiency (PCE), BIPV on façades must achieve high PCE while considering the overall 

performance of the building (Basher et al., 2023; Mangkuto et al., 2023; Roy et al., 2020). 

 

The tropical climate provides an ideal setting for the integration of BIPV, benefiting from the consistent 

solar radiation available throughout the year (Abdullahi et al., 2021; Mangkuto et al., 2023). In these 

regions, characterized by hot and humid conditions, there is a substantial need for cooling and 

ventilation in urban areas, resulting in a significant proportion (30–50%) of electricity consumption (T. 

Chen et al., 2022). The tropical region experiences a fairly constant climate, with abundant rainfall, 

high humidity and temperatures throughout the years (Rababah et al., 2021). As a result, reducing 

emissions, specifically carbon dioxide emissions, is a critical objective in overall emission reduction 

strategies for tropical countries. The widespread use of extensive windows in building designs further 

enhances the suitability of BIPV technology in tropical regions. This favorable combination highlights 

the considerable potential for implementing BIPV in tropical buildings. However, a comprehensive 

assessment of BIPV's efficacy in such environments necessitates a thorough evaluation of its energy 

performance within the specific climatic conditions prevalent in tropical regions. 

 

This study aims to evaluate the energy performance of transparent photovoltaics applied to building 

windows in a tropical climate, considering their potential for installation in buildings in tropical areas. 

The energy performance of various BIPV windows has been extensively investigated in various 

locations, including Tanzania (Joseph et al, 2019), Texas (Do et al, 2017), China (Li et al, 2021), 

Birmingham (Liu et al, 2020), Melbourne (Panagiotidou et al, 2021), Spain (Romaní et al, 2021), 

Minneapolis (Ulavi et al, 2014), and New York (Wheeler et al, 2022). However, studies comparing the 

performance of BIPV windows across multiple countries are still limited, as highlighted by Hassan et 

al (2022) for Dhaka, Abu Dhabi, and Oslo. Therefore, our study aims to fill this gap by pioneering 

efforts to compare the performance of BIPV windows in four tropical climates, namely Jakarta, 

Singapore, Kuala Lumpur, Rio de Janeiro, and Kotoka. 

 

In comparison to existing studies, this research provides a study and comprehensive analysis of their 

characteristics and parameters. This study adopts a solar cells model to be applied to BIPV windows, 

highlighting their impact on its optical and energy performance. The focus of this study is oriented to 

an energy perspective, limiting the discussion to lighting and thermal performance. By specifically 

examining the context of tropical buildings, the contribution of our study is to explore the potential of 

BIPV in optimizing energy efficiency and promoting sustainability. The evaluation encompasses 

various factors, such as electrical performance, thermal insulation capabilities, solar heat gain 

coefficient, and optical properties. Finally, discussions are added to provide insights for architects, 

building designers, and policymakers seeking to promote sustainable building practices in these regions. 

Through an analysis of these aspects, we provide valuable insights into the feasibility and effectiveness 

of transparent photovoltaics for building windows in tropical climates. The findings of this study have 

the potential to enhance our understanding of the energy-saving capabilities and overall performance of 

transparent photovoltaics in tropical building environments. Additionally, the outcomes can serve as a 

basis for developing strategies to integrate BIPV technologies into tropical building designs, fostering 

energy-efficient practices and sustainable solutions for the construction industry. 
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2.  Methods 

 

2.1 BIPV Windows: Characteristics and Parameters 

 

BIPV windows are commonly recognized as semi-transparent photovoltaics in numerous literature 

sources due to their characteristic semi-transparency. The solar cells employed in BIPV windows 

encompass various types, including c-Si (crystalline silicon), a-Si (amorphous silicon), CdTe (cadmium 

telluride), as well as emerging solar cell technologies like poly-Si (polycrystalline silicon), dye-

sensitized solar cells (DSSCs), and perovskite solar cells. For its application as building windows, a 

series of PV cells are typically sandwiched between two glass sheets, as shown in Figure 1. 

Figure 1. (a) Transparent glazing installation with dye-sensitized solar cells (Lee et al., 2020), (b) 

Semitransparent glazing installation with c-Si solar cell strips (Lee et al., 2020), (c) 

Semitransparent PV window module layer configuration (Li et al., 2021), (d) Illustration of 

light entering the module which is absorbed and transmitted by module (Lee et al., 2020),  

and (e) Power Coverssion Efficiency (PCE) on average Visible Transmittance (%) of 

organic, inorganic and perovskite thin films (Lee et al., 2020). 

 

BIPV windows can be obtained in diverse configurations of glass types, thicknesses, strengths, and 

transparency levels, collectively exerting influence over key characteristics such as the U-factor, Solar 

Heat Gain Coefficient (SHGC), solar transmittance (τsolar), visible transmittance (τvis), and energy 

conversion efficiency (Baenas & Machado, 2017; Do et al., 2017; Gueymard & duPont, 2009; Sánchez-

Palencia et al., 2019). These properties, in turn, impact various aspects of building loads, encompassing 

heating, cooling, and lighting requirements, as well as the generation of electricity. 

 

The SHGC quantifies the amount of solar energy that enters a room directly through the window (F. 

Chen et al., 2012; Yu et al., 2021). On the other hand, the U-value represents the rate of heat gain or 

loss through the window due to temperature differences between the indoor and outdoor environments 

(Aguilar-Santana et al., 2020; Cuce & Cuce, 2019; Simões et al., 2023). The values of both SHGC and 

U-value have a notable impact on the heat gains or losses experienced in the room, thereby influencing 

the energy consumption associated with heating, ventilation, and air conditioning (HVAC) systems. In 

addition to thermal parameters, the optical performance of transparent photovoltaics also encompasses 

factors such as visual light transmittance (VLT) and glare probability value (D. Liu et al., 2020; X. Liu 
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& Wu, 2022). These optical properties have a direct impact on both the visual experience inside the 

building and the energy consumption of artificial lighting. 

 

The impact of BIPV adoption on building energy consumption is illustrated in Figure 2. Indoor 

illumination and artificial lighting in buildings are influenced by the optical characteristics of BIPV 

windows, thus affecting energy consumption for lighting. The thermal characteristics of BIPV 

windows, as expressed by the SHGC and U values, directly impact indoor heat gain and consequently 

energy consumption for air conditioning. BIPV windows have the capability to generate electricity, 

which can be consumed within the buildings or fed into the grid, thereby contributing to building energy 

conservation to a certain extent. Therefore, the impact of BIPV windows on building energy 

consumption is determined by the trade-off between lighting performance, electrical generation 

performance, and thermal performance. 

 

Figure 2. The impact of BIPV adoption on building energy consumption (Ng et al., 2013). 

 

To enhance the VLT of the entire glazing system, the solar cells usually do not cover the entire surface 

area of the glazing. The ratio of the area covered with solar cells to the total area of the glazing is 

referred to as the cell coverage ratio. This type of BIPV windows has the capability to generate 

electricity while simultaneously reducing indoor solar heat gain by converting a portion of the incident 

radiation into electrical energy. 

 

2.2 Model Development 

 

The study was carried out through the development of a model utilizing OpenStudio and the execution 

of EnergyPlus simulations based on version 23.1. The model featured a room geometry measuring 5 m 

× 5 m × 3 m, which is depicted in Figure 3. The non-transparent facade material of the building consisted 
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of brick walls, maintaining consistency across all simulations. The sole distinction within the 

simulations pertained to the window type, comparing a 0.6 mm clear glass window with a semi-

transparent photovoltaic (PV) window model. The specifications for each window type are presented 

in Table 1 for clear glass and Table 2 for the PV windows. By comparing and contrasting the outcomes 

of both scenarios, the analysis aimed to ascertain the profiles of energy consumption and the potential 

for energy savings. 

 

 

 

 

Figure 3. Building model used in this study. 

 

Table 1. Specifications for clear glass used in this study. 
  

Parameter(s) Specification 

Thickness 0.006 m 

Solar Transmittance 83.7% 

Visible Transmittance 

Conductivity 

89.8% 

0.9 W/mK 

 

Table 2. Specifications for PV Windows used in this study. 
  

Parameter(s) Specification 

PV Type aSi 

U-Factor 5.03 W/m2K 

Solar Heat Gain Coefficient 0.4002 

Visible Transmittance 24% 

Cell Efficiency 2.4% 

 

In order to assess the energy efficiency of transparent photovoltaics applied to building windows in a 

tropical climate, a systematic approach was employed. The initial phase encompassed the creation of a 

detailed model utilizing OpenStudio, facilitating a comprehensive depiction of the building's geometric 

attributes, encompassing dimensions and layout. Subsequently, EnergyPlus simulations were conducted 

on this model, employing predefined climate profiles to accurately simulate the diverse environmental 

conditions. This investigation involved simulations performed in a tropical climate, using five distinct 

climate profiles: Jakarta, Indonesia; Singapore, Singapore; Kuala Lumpur, Malaysia; Rio de Janeiro, 

Brazil; and Kotoka, Ghana. These weather profiles are described in Table 3. 

 

Subsequently, the specifications for building materials were established, ensuring the constancy of all 

other variables except for the window type. This enabled a direct juxtaposition between a conventional 

transparent glass window and a semi-transparent photovoltaic window. The material used in the 

building model is described in Table 4. 
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Table 3. Climate profile used in this simulation. 

    

City, Country Average 

Temperature 

Maximum Dry Bulb 

Temperature 

Minimum Dry Bulb 

Temperature 

Jakarta, Indonesia 28.0 °C 35.0 °C 22.0 °C 

Singapore, Singapore 28.3 °C 31.4 °C 22.0 °C 

Kuala Lumpur, Malaysia 28.2 °C 36.0 °C 22.0 °C 

Rio de Janeiro, Brazil 24.7 °C 39.6 °C 12.5 °C 

Kotoka, Ghana 27.9 °C 34.9 °C 19.0 °C 

 

Table 4. Material used in the study model. 
  

Building Component  Material 

Roof Plasterboard + Clay Tile 

Ceiling Plasterboard + Concrete + Porcelaine 

Wall Air Film + Cement Plaster + Brick + Cement 

Plaster + Air Film 

Floor Porcelain Floor + Concrete 

Door Wooden door 

Window 1) a-Si Photovoltaic 

2) Clear Glass 

 

Each building material used has its own material characteristics, including thermal transmittance and 

solar transmittance. These characteristics are input into a building model with transparent windows and 

compared with windows with transparent photovoltaics, within the specific context of building 

windows in a tropical climate. 

 

3.  Results and Discussions 

 

3.1 Simulation Results and Analysis 

 

The simulation results, which are succinctly illustrated in Figure 4, shed light on the energy 

consumption profiles associated with the different window options. The total and net-site energy is a 

crucial metric that encompasses the comprehensive energy consumption of a building, encompassing 

both the energy utilized within the building and the energy losses during distribution. Total energy 

refers to the overall energy utilized within a building, encompassing all forms of energy consumption. 

On the other hand, net-site energy accounts for the difference between the energy consumed within the 

building and the total energy generated on-site. 

 

In comparison to clear glass windows, PV windows have better material qualities that block the entry 

of solar radiation, reducing the need for room cooling. The analysis conducted on the provided data 

demonstrates that PV windows generally exhibit slightly lower total site energy compared to clear glass 

windows across all evaluated cities, as shown in Figure 4(a). For instance, Jakarta has the highest total 

site energy consumption across both clear glass and BIPV categories, with values of 8.48 GJ and 8.39 

GJ, respectively. On the other hand, Rio de Janeiro exhibits the lowest energy consumption figures 

across both glazing types, with total site energy values of 5.68 GJ and 5.58 GJ. Several factors influence 

these results, especially related to the capacity of glazing materials to mitigate solar radiation, including 

aspects such as glazing thickness, conductivity, solar heat gain coefficient, solar transmittance, visible 

transmittance, and U-factor which are different between clear glass and PV windows, where PV 

windows block light and heat slightly better than clear glass (Cuce & Cuce, 2019; Romaní et al., 2021; 

Wheeler et al., 2022). This indicates that the integration of PV windows has the potential to contribute 

to a reduction in the overall energy demand of a building, thereby enhancing energy efficiency. 

 

Furthermore, as in Figure 4(b), when considering net site energy, which accounts for energy production 

within the buildings, Jakarta also exhibits the highest values among the cities, with 8.48 GJ for clear 

glass and 4.94 GJ for BIPV. On the other hand, Rio de Janeiro exhibits the lowest energy consumption 
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figures across both glazing types, with total site energy values of 5.68 GJ and 5.58 GJ and net site 

energy of 5.68 GJ and 2.31 GJ for clear glass and BIPV, respectively. The results obtained from the 

data analysis indicate that PV windows show significant reductions in net site energy compared to clear 

glass windows. 

 

 

 
(a) 

 
(b) 

Figure 4. Comparison of clear glass and PV windows in several tropical cities in the terms of (a) Total 

Site Energy and (b) Net-Site Energy. 
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The energy performance and potential energy savings are influenced by various factors, including the 

climatic profiles of the evaluated cities. The climate profiles play a significant role in determining the 

heat load imposed on the building and the potential energy generation capacity of PV windows. In 

practice, the benefits of PV windows can be most pronounced in climates characterized by, for example, 

sunlight and high solar radiation, find optimal use in cities like Jakarta, Singapore, and Kuala Lumpur. 

The city's tropical climate, characterized by abundant sunlight throughout the year, creates ideal 

conditions for PV technology to harness solar energy efficiently. Key climate variables such as solar 

irradiance, ambient temperature, and cloud cover play an important role, with higher solar irradiance 

levels and moderate temperatures increasing PV performance. As a result, PV windows will work as 

effective solutions for reducing energy consumption in buildings in regions characterized by these 

climatic profiles. 

 

Additionally, the percentage decrease in energy consumption and losses provided by PV windows can 

be observed across the analyzed cities, with Jakarta experiencing a reduction of approximately 41.72% 

in net site energy, while Rio de Janeiro witnessed a decrease of approximately 59.30% in net site energy. 

These percentages signify the significant impact of PV window integration in achieving energy 

efficiency and emphasizing their potential benefits for reducing energy consumption in building 

applications. 

 

These results support the findings of previous studies conducted in other tropical regions. For example, 

Hassan et al (2022) concluded that the use of Semi-Transparent Photovoltaics on windows of buildings 

in Dhaka and Abu Dhabi would be more effective in reducing energy demand by approximately 40–

65%, compared to their use in Oslo, where they only decrease energy demand by 25–35%. 

 

3.2 Discussions 

 

The development of PV windows in tropical countries faces unique climate challenges. Tropical regions 

have high solar radiation levels, offering great potential for PV window applications (Hassan et al., 

2022; Joseph et al., 2019). However, the hot and humid climate presents difficulties in managing 

temperature and ensuring thermal stability. Elevated temperatures can negatively impact the efficiency 

and performance of PV materials, leading to decreased power output (Dubey et al., 2013; Ebhota & 

Tabakov, 2023; Ye et al., 2013). Moreover, the high humidity levels can affect the durability and 

lifespan of PV windows, necessitating advanced materials and design strategies to ensure their 

effectiveness in such environments (Hasan et al., 2022; Segbefia et al., 2021). Addressing these climate 

challenges is crucial to maximize the potential of PV windows in tropical countries and ensure their 

long-term viability. 

 

Policies and regulations play a crucial role in facilitating the adoption and incorporation of renewable 

energy technologies, including PV windows. However, specific policy frameworks tailored to PV 

window applications may still be lacking or insufficiently developed in many tropical countries (Kılıç 

& Kekezoğlu, 2022; Lo et al., 2018; Lu et al., 2020; Tarigan, 2020; Vaka et al., 2020). It is imperative 

to establish supportive policies that incentivize the utilization of PV windows, such as implementing 

feed-in tariffs, offering tax incentives, and formulating building codes that promote their integration 

into building designs (Dijkgraaf et al., 2018; Duque et al., 2017; Halimatussadiah et al., 2023; Le et al., 

2022; Panagiotidou et al., 2021). Furthermore, the formulation of clear guidelines and standards for PV 

window installations is essential to ensure safety, performance, and interoperability (Kim et al., 2016; 

Needell et al., 2021). By bolstering policy support and creating an enabling environment for PV window 

technologies, the widespread deployment of such systems can be facilitated, contributing significantly 

to the transition toward sustainable and energy-efficient buildings. 

 

One of the significant obstacles encountered in the development of PV windows in tropical countries 

pertains to achieving seamless architectural integration. It is imperative that PV windows not only serve 

as energy-generating components but also meet the aesthetic and functional requirements of building 

designs (X. Liu & Wu, 2022; Mesloub et al., 2020; Ulavi et al., 2014; Yang et al., 2023). Striking a 

balance between energy performance, visual transparency, and architectural aesthetics poses a 
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substantial challenge in the advancement of PV windows. Integrating PV technology into various 

window types, such as operable windows, skylights, and curtain walls, demands meticulous design 

considerations and engineering solutions to uphold functionality, durability, and overall building 

performance (T. Chen et al., 2022; Martín-Chivelet et al., 2022; Rababah et al., 2021; Yu et al., 2021). 

Overcoming these challenges associated with architectural integration will be crucial in ensuring the 

widespread acceptance and adoption of PV windows in tropical countries. 

 

Moreover, the successful integration of PV windows into building designs necessitates a 

multidisciplinary approach. Collaboration among architects, engineers, material scientists, and other 

relevant stakeholders is vital to optimizing the architectural integration of PV windows (Fregonara et 

al., 2013; Rifaat, 2019). This collaborative effort entails exploring innovative design strategies, such as 

incorporating advanced materials, optimizing the arrangement of PV cells within the windows, and 

implementing smart control systems for efficient energy management. Additionally, considering factors 

such as daylighting, glare control, thermal insulation, and structural stability becomes essential to 

maintain occupant comfort and ensure the overall performance of the building (Buratti et al., 2018; 

Huang et al., 2012; Kolani et al., 2023; Mannan & Al-Ghamdi, 2021).  By addressing these architectural 

integration challenges through interdisciplinary collaborations and innovative design approaches, PV 

windows can be seamlessly incorporated into building designs, leading to enhanced energy efficiency 

and aesthetics in tropical countries. 

 

4.  Conclusions 

 

The use of BIPV in transparent building facades presents numerous advantages, notably in enhancing 

energy efficiency. However, the extent of potential energy savings varies across different cities, 

emphasizing the effectiveness of PV windows in improving energy efficiency and minimizing energy 

losses during distribution. Tropical countries have a greater potential to utilize BIPV to reduce energy 

demand in buildings, thereby enabling the creation of net zero energy buildings. However, the potential 

benefits of BIPV in tropical countries have not been extensively explored, and our study aims to fill this 

gap by estimating the energy efficiency benefits derived from using transparent photovoltaics in 

buildings located in Jakarta, Singapore, Kuala Lumpur, Rio de Janeiro, and Kotoka. Our analysis results 

indicate that the benefits are particularly evident in tropical regions, characterized by consistent solar 

radiation and a high demand for cooling. This situation presents the potential to substantially reduce net 

energy consumption, with our findings showing reductions of up to 59.3% in a building model located 

in Rio de Janeiro.  

 

The energy-saving benefits of BIPV systems are significantly influenced by climate-related challenges, 

including temperature and humidity management. Increasing these energy savings necessitates the 

adoption of advanced materials and design strategies. Our research findings provide valuable data that 

serve as a foundation for promoting the widespread adoption of BIPV technology. To overcome policy 

challenges should implement supportive policies, incentives, and clear guidelines for the installation of 

PV windows. These measures can help to create an enabling environment for the uptake of BIPV 

systems and accelerate their deployment in various regions. 
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