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Abstract. The application of machine learning and artificial intelligence is popular nowadays to improve data 

analytics in the oil and gas industry. A huge amount of data can be processed to gain insights about the subsurface 

conditions, even reducing time for manual review or interpretation. There are three cases to be discussed in this 
study that starts from porosity estimation of thin core image using Otsu's thresholding, estimation of oil production 

rate from sucker-rod pumping wells and sonic travel-time log generation. Two supervised learning algorithms are 

applied, XGBoost and Keras. These algorithms will capture all possible correlations between the input and output 

data. From data normalization, exploratory data analysis and model building, the workflow is built on Google 

Colab. The original dataset is split into training and testing. Tuning hyperparameters such as the number of hidden 

layers, neurons, activation function, optimizers and learning rates are captured to reduce the complexity of the 

model. The model is evaluated by error values and the coefficient of determination to estimate the model skill on 

unseen data. 
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1. Introduction 

 

1.1 Background 

 
The profitability of oil wells will decrease along with the production declines, but the costs for 

workover, maintenance and development will become much higher (Achmad, 2017). The 

implementation of digital field technology has become a continuous effort in major oil and gas 
companies around the world integrating the latest advances in AI-based technology to improve well 

performance, production monitoring and business results. Digital solutions affect the analysis, 

simulation, scenarios and decision. A digital oil well is equipped with a downhole monitoring system 

and sensors generating data every second to monitor the real-time condition of the wells. By 
implementing technology related to digitalization also artificial intelligence, field data can bring more 

intuition to support the decision workflows and optimize oil production. From the simplest application, 

to determine the porosity of a thin core image. A simple core image will be interpreted as a two-
dimensional matrix of a pixel, and the algorithm just needs to calculate the total number of white and 

black pixels. The total flow rate of wells with the artificial lift sucker-rod pump is measured, but the 

contributions of the individual wells are unknown. It is critical to know the single contributions to 
account material balance, well monitoring, reservoir management and future economic analysis. Oil-

flow measurement (Equation 1) can be performed using orifice meters. A range of metering equipment 

and techniques are available to provide high accuracy flow rate measurements under a wide range of 

conditions. For steady-state conditions, the most commonly used is the orifice flow meter. A multiphase 
flow meter is expensive to install and operate, but it provides more valuable information by determining 

the flow rates of different phase components in a flowing stream through one device (Campos et al., 

2014). For a larger number of wells, the flow tests are infrequent. Monitoring of production is not 
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usually carried out in the real-time and a generalized form of Gilbert correlation can be used to allocate 
production to the wells (Khan et al., 2019). The last is the sonic log generation. Sonic travel time logs 

are quite important for subsurface characterization around the wellbore (Bukar et al., 2019). However, 

due to operational costs issues or constraints, these logs are not always acquired or only run in certain 

wells. Gamma-ray, density, neutron and resistivity are known as conventional logs that are run in most 
of the wells. If sonic logs are not acquired in a well, they can be synthesized based on existing data or 

neighbor wells and paired with their subsurface properties from conventional logs. 

 

  qo =  
PwhDA3

A1RA2
 (1) 

 

Where, 

qo = Oil flow rate, stb/day 

Pwh = Wellhead pressure, psia 

D = Choke size, in 

R = Gas-liquid-ratio, Mscf/stb 

A1, A2, A3 are constants 

 

1.2 Supervised Machine Learning Algorithm 

 
Supervised machine learning (Figure 1) is one of the types of machine learning algorithms that trains 

both the input and output data (Caruana & Niculescu-Mizil, 2006). The targets are known; for example, 

in the case of sucker-rod pumping wells, the oil flowrates from the separator test are acquired. Sonic 
travel time logs from a limited number of wells will be paired with conventional logs and are trained 

through the learning process. Keras and XGBoost methods are used in this study. Keras is a high-level 

Application Programming Interface (API) with the model and layers as the main structure. The most 

time-consuming process is to determine the optimum architecture of the model to minimize the error 
(Li et al., 1995). XGBoost or Extreme Gradient Boosting is a widely used machine learning method in 

data science and machine learning competitions because it performs well in most data sets (Chen & 

Guestrin, 2016). 
 

 

 

 

 
 
 
 
 
 

 

 

 

 

 

Figure 1. Supervised machine learning workflow. 
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Figure 2. Artificial neural network model. 

 

The idea of an artificial neural network (ANN) model (Figure 2) is that it begins with random weights, 

then will be adjusted through iteration and backpropagation to reduce the error (Equation 2).  
 

  yk = 𝐟(∑ wkjxj + bk
m
j=1 ) (2) 

 
 

𝐟 = activation functions 

xj = input 

wkj = weights of neutron 

bk = bias 

yk = output 

  
 

2. Methodology 

 
2.1 Data Collection 

 

The data is obtained from Field "X" with an artificial lift sucker-rod pump equipped with a 
dynamometer for a downhole card survey. The first step is to collect all input variables, and they are 

plunger size, stroke length, pump displacement, pumping speed, pump fillage, minimum polished rod 

load (MPRL), peak polished rod load (PPRL), card area and barrel oil per day (BOPD). Pumping speed 

is measured as strokes per minute, the number of strokes the polished rod completes in one minute. For 
conventional pumping units, the stroke length is available with a maximum of 240 inches, but long-

stroke pumping units can have up to 366 inches.  When idealized conditions are assumed to prevail, the 

plunger is completely filled with fluids. Incomplete filling (less than 100%) usually occurs when pump 
capacity is higher than the inflow rate of the well and can be happened due to gas interference (Takacs, 

2015). The statistics descriptions are shown in Table 1. For the case of porosity estimation, the input 

data is a thin core image, as shown in Figure 3. When using a wireline log to determine the formation 

characteristics, often one of the curves was missing caused by tool failure or was not included during 
the measurement. To address this problem, several studies using machine learning have been performed 

to generate synthetic well logs. Input data for the sonic log generation is in Table 2. The data is obtained 

with a total sample of 30,143 before normalization. There are seven input parameters, caliper log, 
neutron log, gamma-ray, deep resistivity, medium resistivity, photo-electric factor, density log and two 

outputs, compressional travel-time (DTC) and shear travel-time (DTS). 
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Table 1. Input parameters of sucker-rod pumping wells. 

Variable Min. Max. Mean 

Plunger size, in 1.75 3.75 2.96 

Pumping speed, spm 5.77 11.42 8.88 

Stroke length, in 68 100 87.26 

Pump fillage, % 11.2 100 71.19 
MPRL, lbs. 656 8,496 2,038.8 

PPRL, lbs. 2,096 10,752 5,664.9 

Pump Disp, B/D 183 1,841.8 593.16 
Card area, in.lbs. 168 8,094.7 1,239.6 

Barrel oil per day 24.1 1,660.8 412.75 

 

 

Table 2. Input parameters of sonic log generation. 

Variable Min. Max. Mean 

Caliper log, in 5.93 21.06 8.42 

Neutron log 0.014 0.998 0.235 
Gamma-ray, API 1.038 199.676 43.041 

Deep Res, ohm/m 0.129 124.249 2.549 

Med Res, ohm/m 0.185 914.191 2.7293 

Photo E, Barn/e 0.002 28.106 3.918 

Density, gr/cm3 0.68 3.25 2.415 

DTC, μs/ft 49.97 155.98 87.69 

DTS, μs/ft 80.58 487.44 181.33 

 

 

Figure 3.  Core image sample for porosity estimation. From the photomicrograph of a quartz arenite  

  (sandstone) St. Peter Formation (Ordovician) near Dixon, Illinois (Rygel, 2010).  

 
2.2 Model Building 

 

The data is rarely homogenous and there are two major problems, outliers and missing values. These 
will reduce the performance of the model. Feature scaling is an important part of data pre-processing 

before applying machine learning algorithms. By scaling inputs variables, gradient descent would not 

take a very long time to converge. Deciding on the architecture of neural networks is very time-

consuming and complicated. Since there is no clear theory to determine the number of nodes in each 
hidden layer or the number of layers, the common practice uses trial and error. Several researchers try 

to determine the optimum architecture by the equation shown in Table 3 where 𝑁ℎ is the number of 

neurons in a hidden layer, 𝑛 = 𝑁𝑖 = input neurons, 𝑁𝑜 is output neurons, and 𝑁 is total samples.  
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Table 3. Various approaches for the architecture. 
 

No. Various methods 

 

Year Number of hidden neurons 

1 Li et al. method 1995 𝑁ℎ = (√1 + 8𝑛 − 1)/2 

2 Tamura and Tateishi method 1997 𝑁ℎ = 𝑛 − 1 

3 Zhang et al. method 2003 𝑁ℎ = 2𝑛/(𝑛 + 1) 
4 Xu and Chen method 2008 𝑁ℎ = 𝐶𝑓(𝑁/𝑛 𝑙𝑜𝑔 𝑁)0.5  

5 Shibata and Ikeda method 2009 𝑁ℎ = √𝑁𝑖𝑁𝑜 

6 Hunter et al. method 2012 𝑁ℎ = 2𝑛 − 1 

 

 
For hyperparameter tuning of the XGBoost model, Grid Search is very popular. Consider a grid space 

of hyperparameter stored in a dictionary. For each hyperparameter pair, this tool will conduct cross-

validation on the training set with a certain number of training samples per iteration and choose the 
parameter that leads to the minimum error (Table 4).  

 

Table 4. Grid search algorithm (Doma & Pirouz, 2020). 

 

Algorithm: Parameter tuning using Grid Search 

Input: 𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝐷𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 

Output: 𝑏𝑒𝑠𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑘𝑒𝑦: 𝑣𝑎𝑙𝑢𝑒 

import dataset 

for 𝑖 ∈  𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑘𝑒𝑦 ∈ 

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝐷𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 do 

   for 𝑛 𝑓𝑜𝑙𝑑 𝑐𝑟𝑜𝑠𝑠 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 do 

         get maximum accuracy value 

         if 𝑖 > 𝐿𝑎𝑠𝑡𝑃𝑎𝑟𝑎𝑚𝑠 then 

              𝑖 > 𝐿𝑎𝑠𝑡𝑃𝑎𝑟𝑎𝑚𝑠 =  𝑖 
         End 

   End 

End 

 

Dropout is a powerful technique that can be applied to an artificial neural network (Figure 4) to prevent 
overfitting. Overfitting is the overtraining of limited training data, which results in learning complicated 

models and performs poorly on new data or the test data set. Dropout works by randomly dropping out 

units of the hidden layer (Figure 5). Dropout rate 0.2 is used, which means one in five neurons in the 
hidden layer will be randomly excluded from each update cycle. The parameters for the artificial neural 

network model are shown in Table 5. 

 
Figure 4. Artificial neural network architecture. 
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Figure 5. Without dropout rate (a) and after dropout (b). 

 

 
Table 5. Design parameters for ANN Model. 

Parameter 

 

Value 

Output neuron  1 

No. of hidden layer  2 
Input neurons  8 

No. of epochs  100 

Weight initializer  Glorot normal 
Activation function ReLU, Linear 

Learning rate  0.1 

Batch size 32 
Optimizer Adam 

Dropout rate 0 

 

 
def build_model(): 

  model = keras.Sequential([ 

    layers.Dense(8, activation='relu', input_shape=[len(train_dataset.key

s())]), 

    layers.Dense(5, activation='relu'), 

    layers.Dense(1) 

  ]) 

 

  optimizer = tf.keras.optimizers.Adam(0.001) 

  model.compile(loss='mse', 

                optimizer=optimizer, 

                metrics=['mae', 'mse']) 

  return model 

Figure 6. Keras model after hyperparameters tuning. 

 

3. Results and Discussion 

 

3.1 Case A: Porosity Estimation 

 
A sample core image is applied to Gaussian Blur to reduce the noise within the image. Python will 

interpret the core as a two-dimensional matrix of a pixel from 0 to 255. The distribution of pixels after 

Gaussian Blur is shown in Figure 7. The blue dash line is the chosen threshold by Otsu's thresholding, 

and only black and white color will be displayed (Figure 8). The porosity will be calculated from the 
number of white and black pixels (Figure 9). The porosity is 0.3178. 
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Figure 7. Gaussian blur. 
 

Figure 8. Core image after Otsu's Thresholding. 
 
blur = cv2.GaussianBlur(img,(5,5),0) 

ret, th = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) 

n_white_pix = np.sum(th == 255) 

n_black_pix = np.sum(th == 0) 

porosity = n_black_pix/(n_white_pix+n_black_pix) 

 

Figure 9. Porosity estimation by calculating the number of white and black pixels. 

 
3.2 Case B: Estimating Oil Production Rates 

 

After training the model with a train size of 80%, the model is tested to see the performance. The 

coefficient of determination evaluates the model skill, denoted as R2. Results for the training period, 

the R2 is 0.9994, and  R2 is 0.9752 for the testing period (Figure 10). Residual plots display the residual 

values on the 𝑦-axis and the actual barrel oil per day on the 𝑥-axis (Figure 11). The points are very close 

to the fitted line and the residuals center on zero, indicated a good fit of the regression model.  
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Figure 10. Regression and residual plot. 

 

 
Figure 11. Production rates of sucker-rod pumping wells. 

 

3.3 Case C: Pseudosonic Log Generation 
 

The sonic log is generated using XGBoost, a gradient boosting decision trees algorithm for the 

efficiency of computing time and memory resources (Figure 12). The best hyperparameters are chosen 
using Grid Search, a tool for hyperparameters tuning with cross-validation on Google Colab to faster 

the running time. Since there are two targets (DTC and DTS), as shown in Figure 13, the results will be 

summarized in Table 6 and Table 7. Root-mean-square error (RMSE) is defined as the equation below 
(Equation 3). 
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  RMSE = √∑ [ypred(i)−y(i)]
2n

i=1

n
 (3) 

 
 
model= xgboost.XGBRegressor(n_estimators=100, learning_rate=0.1, 

                            objective='reg:squarederror', 

                            gamma=0.6, subsample=0.8,  

                            colsample_bytree=0.8,max_depth=10, 

                            min_child_weight=3, 

                            random_state=42) 

model.fit(train$x,train$y) 

 

Figure 12. XGBoost model in Google Colab. 

 

Figure 13. Regression plot for DTC and DTS. 

 

Table 6. Coefficient of determination. 

Target Training Testing 

DTC 0.99904495711231 0.98753707866924 
DTS 0.99954584882725 0.99102019201806 

 

Table 7. Root mean square error. 

Target Training Testing 

DTC 0.728889373741041 2.63487665174514 

DTS 1.820038472606744 8.17570127875725 

 

4. Conclusion 

 

This study shows some of the applications of supervised machine learning algorithms, from the simplest 

one, porosity estimation and to the regression cases, oil flowrates and sonic logs. The artificial neural 
network can accurately estimate the oil production rates by using the online dynamometer data. Extreme 

gradient boosting algorithm, XGBoost, works very well in generating the compressional travel-time 

and shear travel-time logs. It is emphasized that the model is trained on a certain range of data, and 

estimating the target by using some instances outside the range will not give a valid estimation. The 
hyperparameters of the two supervised machine learning algorithms can be improved. The model should 
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be trained because these hyperparameters might have changed after inputting other variables and a 
significant amount of data.    
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